Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF’s North Pole Researchers Study Climate Change In The Arctic

18.06.2004


Long before a Hollywood blockbuster about catastrophic climate change packed cinema multiplexes this spring, researchers at the top of the world, supported by the National Science Foundation (NSF), were using an array of scientific tools to build a comprehensive scientific picture of environmental change in the Arctic and what it may mean for the rest of the globe.

Led by oceanographer James Morison, of the University of Washington, NSF-supported scientists from Oregon State University, as well as others supported by the National Oceanic and Atmospheric Administration (NOAA), the Naval Post-graduate School, and the Japan Marine Science and Technology Center, are conducting an array of experiments at the North Pole to understand this little-known, but extremely important region.

The Polar regions, scientists believe, will sound the earliest warnings that changes in global climate are underway and, in recent years, the Arctic has experienced a well-documented warming trend. Whether this change is permanent or part of a cycle and what the potential effects of a warmer Arctic Ocean could be are questions the team hopes to answer.

NSF, which funds the North Pole Environmental Observatory (NPEO) through its Office of Polar Programs, is making available video of the researchers working at the Pole, interviews with key NPEO scientists at the Pole and an animation of a mooring string scientists use to place instruments there.

The mooring collects and measures ice thickness and movement, water temperature and salinity, and the speed and direction of underwater polar currents for a year. In keeping with the global scale of the project, the mooring string stretches more than 4.2 kilometers (2.6 miles) from the bottom of the Arctic Ocean to within feet of the constantly shifting polar ice pack. That’s longer than Mt. Rainier is high.

In addition to the mooring, scientists with Morison’s group are drilling through ice often more than 3.6 meters (12 feet) thick to install NOAA buoys that measure air temperatures through the ice cover.

They also are imbedding automated sensors into the sea ice to send the detectors on a trek thousands of meters long, from the North Pole to Greenland, to measure heat fluctuations in the upper ocean. Subtle changes in these temperatures can mean large variations in the thickness of ice that covers the ocean.

Finally, Morison and colleague Kelly Falkner, of Oregon State University, fly a small aircraft along a line several thousand kilometers long from which they take seawater samples from 1,000 meters below the surface for chemical analysis.

Julie A. Smith | NSF
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>