Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF’s North Pole Researchers Study Climate Change In The Arctic

18.06.2004


Long before a Hollywood blockbuster about catastrophic climate change packed cinema multiplexes this spring, researchers at the top of the world, supported by the National Science Foundation (NSF), were using an array of scientific tools to build a comprehensive scientific picture of environmental change in the Arctic and what it may mean for the rest of the globe.

Led by oceanographer James Morison, of the University of Washington, NSF-supported scientists from Oregon State University, as well as others supported by the National Oceanic and Atmospheric Administration (NOAA), the Naval Post-graduate School, and the Japan Marine Science and Technology Center, are conducting an array of experiments at the North Pole to understand this little-known, but extremely important region.

The Polar regions, scientists believe, will sound the earliest warnings that changes in global climate are underway and, in recent years, the Arctic has experienced a well-documented warming trend. Whether this change is permanent or part of a cycle and what the potential effects of a warmer Arctic Ocean could be are questions the team hopes to answer.

NSF, which funds the North Pole Environmental Observatory (NPEO) through its Office of Polar Programs, is making available video of the researchers working at the Pole, interviews with key NPEO scientists at the Pole and an animation of a mooring string scientists use to place instruments there.

The mooring collects and measures ice thickness and movement, water temperature and salinity, and the speed and direction of underwater polar currents for a year. In keeping with the global scale of the project, the mooring string stretches more than 4.2 kilometers (2.6 miles) from the bottom of the Arctic Ocean to within feet of the constantly shifting polar ice pack. That’s longer than Mt. Rainier is high.

In addition to the mooring, scientists with Morison’s group are drilling through ice often more than 3.6 meters (12 feet) thick to install NOAA buoys that measure air temperatures through the ice cover.

They also are imbedding automated sensors into the sea ice to send the detectors on a trek thousands of meters long, from the North Pole to Greenland, to measure heat fluctuations in the upper ocean. Subtle changes in these temperatures can mean large variations in the thickness of ice that covers the ocean.

Finally, Morison and colleague Kelly Falkner, of Oregon State University, fly a small aircraft along a line several thousand kilometers long from which they take seawater samples from 1,000 meters below the surface for chemical analysis.

Julie A. Smith | NSF
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>