Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists uncover crucial mechanism for blood vessel development

16.06.2004


New research at the University of North Carolina at Chapel Hill provides insights into the fundamental mechanisms controlling blood vessel formation and may have implications for therapies such as non-surgical restoration of circulation.



The study findings appear in the June 15 issue of the journal Blood.

Blood vessel formation, or angiogenesis, is an integral part of normal organ development and function. It also contributes to abnormal conditions, particularly tumor formation and growth.


Angiogenesis begins with the establishment of an intricately branched rudimentary network called the vascular plexus, which is assembled from blood vessel precursor cells. This is followed by increased cell division of specific cells, endothelial cells that make up the lining of blood vessels.

These cells then sprout and migrate away from the parent vessel, and the sprouts ultimately connect with each other, allowing the vessel network to expand. This process is called sprouting angiogenesis.

"It is very important to understand the sprouting process, because it occurs any time there is angiogenesis, whether for helpful reasons, such as wound healing, or in the context of pathology, such as cancer," said Dr. Victoria L. Bautch, who is a member of the School of Medicine’s Carolina Cardiovascular Biology Center and a professor of biology at the university. Angiogenesis is coordinated by the actions of a number of proteins, and one of the most critical regulators of this process is the protein Vascular Endothelial Growth Factor-A, or VEGFA, said Bautch. Sprouting angiogenesis occurs as a result of the interactions of VEGFA with two cell receptor molecules, VEGFR1 (also called flt-1) and VEGFR2 (also called flk-1), she added.

While flk-1 is thought to promote endothelial cell division, the exact functions of flt-1 are poorly understood and have been difficult to uncover until now, said Bautch.

Research by Bautch’s group reveals for the first time that flt-1 positively controls sprouting by regulating endothelial cell migration.

UNC co-authors postdoctoral researcher Joseph Kearney and graduate student Nicholas Kappas measured the efficiency of vessel formation using mouse embryonic stem cells genetically engineered to lack the flt-1 gene and then induced to become endothelial cells.

Mutant and normal embryonic stem cells were additionally engineered to express the green fluorescent protein. This "marker" allows fluorescence microscopy to visualize living cells.

The experiment enabled the researchers to analyze the dynamics of vessel formation in real time by performing time-lapse imaging of live endothelial cells. Using this method they demonstrated that blood vessels made from cells lacking the flt gene are defective in sprouting and that these sprouts migrate less quickly. These findings may have implications for future therapies.

"For instance, coronary heart disease, which is commonly treated by bypass surgery, requires reconstruction of blood vessels using veins from other parts of the body," said Bautch. "Diabetes is another pathological condition associated with loss of circulation in the limbs and extremities."

The goal of angiogenic therapy in these situations is to restore circulation non-surgically.

"There have been attempts to induce blood vessel formation by manipulating the VEGF molecular pathway. Most of the time you don’t get functional vessels, but a set of dilated vessels that haven’t made the right connections," said Bautch.

"We, along with others, are now beginning to unravel the complexity of this pathway. We think the flt-1 receptor actually regulates the amount of VEGFA required for proper vessel formation. So having the right amount of VEGF at the right spot and in the right context is critical," she added. Department of biology co-authors, along with Bautch, Kearney and Kappas, were Catharina Ellerstrom and Frank DiPaola.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>