Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNC scientists uncover crucial mechanism for blood vessel development


New research at the University of North Carolina at Chapel Hill provides insights into the fundamental mechanisms controlling blood vessel formation and may have implications for therapies such as non-surgical restoration of circulation.

The study findings appear in the June 15 issue of the journal Blood.

Blood vessel formation, or angiogenesis, is an integral part of normal organ development and function. It also contributes to abnormal conditions, particularly tumor formation and growth.

Angiogenesis begins with the establishment of an intricately branched rudimentary network called the vascular plexus, which is assembled from blood vessel precursor cells. This is followed by increased cell division of specific cells, endothelial cells that make up the lining of blood vessels.

These cells then sprout and migrate away from the parent vessel, and the sprouts ultimately connect with each other, allowing the vessel network to expand. This process is called sprouting angiogenesis.

"It is very important to understand the sprouting process, because it occurs any time there is angiogenesis, whether for helpful reasons, such as wound healing, or in the context of pathology, such as cancer," said Dr. Victoria L. Bautch, who is a member of the School of Medicine’s Carolina Cardiovascular Biology Center and a professor of biology at the university. Angiogenesis is coordinated by the actions of a number of proteins, and one of the most critical regulators of this process is the protein Vascular Endothelial Growth Factor-A, or VEGFA, said Bautch. Sprouting angiogenesis occurs as a result of the interactions of VEGFA with two cell receptor molecules, VEGFR1 (also called flt-1) and VEGFR2 (also called flk-1), she added.

While flk-1 is thought to promote endothelial cell division, the exact functions of flt-1 are poorly understood and have been difficult to uncover until now, said Bautch.

Research by Bautch’s group reveals for the first time that flt-1 positively controls sprouting by regulating endothelial cell migration.

UNC co-authors postdoctoral researcher Joseph Kearney and graduate student Nicholas Kappas measured the efficiency of vessel formation using mouse embryonic stem cells genetically engineered to lack the flt-1 gene and then induced to become endothelial cells.

Mutant and normal embryonic stem cells were additionally engineered to express the green fluorescent protein. This "marker" allows fluorescence microscopy to visualize living cells.

The experiment enabled the researchers to analyze the dynamics of vessel formation in real time by performing time-lapse imaging of live endothelial cells. Using this method they demonstrated that blood vessels made from cells lacking the flt gene are defective in sprouting and that these sprouts migrate less quickly. These findings may have implications for future therapies.

"For instance, coronary heart disease, which is commonly treated by bypass surgery, requires reconstruction of blood vessels using veins from other parts of the body," said Bautch. "Diabetes is another pathological condition associated with loss of circulation in the limbs and extremities."

The goal of angiogenic therapy in these situations is to restore circulation non-surgically.

"There have been attempts to induce blood vessel formation by manipulating the VEGF molecular pathway. Most of the time you don’t get functional vessels, but a set of dilated vessels that haven’t made the right connections," said Bautch.

"We, along with others, are now beginning to unravel the complexity of this pathway. We think the flt-1 receptor actually regulates the amount of VEGFA required for proper vessel formation. So having the right amount of VEGF at the right spot and in the right context is critical," she added. Department of biology co-authors, along with Bautch, Kearney and Kappas, were Catharina Ellerstrom and Frank DiPaola.

L.H. Lang | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>