Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists uncover crucial mechanism for blood vessel development

16.06.2004


New research at the University of North Carolina at Chapel Hill provides insights into the fundamental mechanisms controlling blood vessel formation and may have implications for therapies such as non-surgical restoration of circulation.



The study findings appear in the June 15 issue of the journal Blood.

Blood vessel formation, or angiogenesis, is an integral part of normal organ development and function. It also contributes to abnormal conditions, particularly tumor formation and growth.


Angiogenesis begins with the establishment of an intricately branched rudimentary network called the vascular plexus, which is assembled from blood vessel precursor cells. This is followed by increased cell division of specific cells, endothelial cells that make up the lining of blood vessels.

These cells then sprout and migrate away from the parent vessel, and the sprouts ultimately connect with each other, allowing the vessel network to expand. This process is called sprouting angiogenesis.

"It is very important to understand the sprouting process, because it occurs any time there is angiogenesis, whether for helpful reasons, such as wound healing, or in the context of pathology, such as cancer," said Dr. Victoria L. Bautch, who is a member of the School of Medicine’s Carolina Cardiovascular Biology Center and a professor of biology at the university. Angiogenesis is coordinated by the actions of a number of proteins, and one of the most critical regulators of this process is the protein Vascular Endothelial Growth Factor-A, or VEGFA, said Bautch. Sprouting angiogenesis occurs as a result of the interactions of VEGFA with two cell receptor molecules, VEGFR1 (also called flt-1) and VEGFR2 (also called flk-1), she added.

While flk-1 is thought to promote endothelial cell division, the exact functions of flt-1 are poorly understood and have been difficult to uncover until now, said Bautch.

Research by Bautch’s group reveals for the first time that flt-1 positively controls sprouting by regulating endothelial cell migration.

UNC co-authors postdoctoral researcher Joseph Kearney and graduate student Nicholas Kappas measured the efficiency of vessel formation using mouse embryonic stem cells genetically engineered to lack the flt-1 gene and then induced to become endothelial cells.

Mutant and normal embryonic stem cells were additionally engineered to express the green fluorescent protein. This "marker" allows fluorescence microscopy to visualize living cells.

The experiment enabled the researchers to analyze the dynamics of vessel formation in real time by performing time-lapse imaging of live endothelial cells. Using this method they demonstrated that blood vessels made from cells lacking the flt gene are defective in sprouting and that these sprouts migrate less quickly. These findings may have implications for future therapies.

"For instance, coronary heart disease, which is commonly treated by bypass surgery, requires reconstruction of blood vessels using veins from other parts of the body," said Bautch. "Diabetes is another pathological condition associated with loss of circulation in the limbs and extremities."

The goal of angiogenic therapy in these situations is to restore circulation non-surgically.

"There have been attempts to induce blood vessel formation by manipulating the VEGF molecular pathway. Most of the time you don’t get functional vessels, but a set of dilated vessels that haven’t made the right connections," said Bautch.

"We, along with others, are now beginning to unravel the complexity of this pathway. We think the flt-1 receptor actually regulates the amount of VEGFA required for proper vessel formation. So having the right amount of VEGF at the right spot and in the right context is critical," she added. Department of biology co-authors, along with Bautch, Kearney and Kappas, were Catharina Ellerstrom and Frank DiPaola.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>