Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists uncover crucial mechanism for blood vessel development

16.06.2004


New research at the University of North Carolina at Chapel Hill provides insights into the fundamental mechanisms controlling blood vessel formation and may have implications for therapies such as non-surgical restoration of circulation.



The study findings appear in the June 15 issue of the journal Blood.

Blood vessel formation, or angiogenesis, is an integral part of normal organ development and function. It also contributes to abnormal conditions, particularly tumor formation and growth.


Angiogenesis begins with the establishment of an intricately branched rudimentary network called the vascular plexus, which is assembled from blood vessel precursor cells. This is followed by increased cell division of specific cells, endothelial cells that make up the lining of blood vessels.

These cells then sprout and migrate away from the parent vessel, and the sprouts ultimately connect with each other, allowing the vessel network to expand. This process is called sprouting angiogenesis.

"It is very important to understand the sprouting process, because it occurs any time there is angiogenesis, whether for helpful reasons, such as wound healing, or in the context of pathology, such as cancer," said Dr. Victoria L. Bautch, who is a member of the School of Medicine’s Carolina Cardiovascular Biology Center and a professor of biology at the university. Angiogenesis is coordinated by the actions of a number of proteins, and one of the most critical regulators of this process is the protein Vascular Endothelial Growth Factor-A, or VEGFA, said Bautch. Sprouting angiogenesis occurs as a result of the interactions of VEGFA with two cell receptor molecules, VEGFR1 (also called flt-1) and VEGFR2 (also called flk-1), she added.

While flk-1 is thought to promote endothelial cell division, the exact functions of flt-1 are poorly understood and have been difficult to uncover until now, said Bautch.

Research by Bautch’s group reveals for the first time that flt-1 positively controls sprouting by regulating endothelial cell migration.

UNC co-authors postdoctoral researcher Joseph Kearney and graduate student Nicholas Kappas measured the efficiency of vessel formation using mouse embryonic stem cells genetically engineered to lack the flt-1 gene and then induced to become endothelial cells.

Mutant and normal embryonic stem cells were additionally engineered to express the green fluorescent protein. This "marker" allows fluorescence microscopy to visualize living cells.

The experiment enabled the researchers to analyze the dynamics of vessel formation in real time by performing time-lapse imaging of live endothelial cells. Using this method they demonstrated that blood vessels made from cells lacking the flt gene are defective in sprouting and that these sprouts migrate less quickly. These findings may have implications for future therapies.

"For instance, coronary heart disease, which is commonly treated by bypass surgery, requires reconstruction of blood vessels using veins from other parts of the body," said Bautch. "Diabetes is another pathological condition associated with loss of circulation in the limbs and extremities."

The goal of angiogenic therapy in these situations is to restore circulation non-surgically.

"There have been attempts to induce blood vessel formation by manipulating the VEGF molecular pathway. Most of the time you don’t get functional vessels, but a set of dilated vessels that haven’t made the right connections," said Bautch.

"We, along with others, are now beginning to unravel the complexity of this pathway. We think the flt-1 receptor actually regulates the amount of VEGFA required for proper vessel formation. So having the right amount of VEGF at the right spot and in the right context is critical," she added. Department of biology co-authors, along with Bautch, Kearney and Kappas, were Catharina Ellerstrom and Frank DiPaola.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>