Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify genetic markers to predict response to chemotherapy for colorectal cancer


One of the most common challenges facing oncologists today is determining the best course of treatment for their patients - one that would be effective and have the fewest possible side effects. In a study presented today at the 40th Annual Meeting of the American Society of Clinical Oncology in New Orleans, Fox Chase Cancer Center researchers have identified genetic markers in the blood that can help predict a patient’s response to and side effects from irinotecan, a common chemotherapy drug for colorectal cancer.

Leslie E. Carlini, Ph.D., a research associate in the Fox Chase laboratory of Rebecca L. Blanchard, Ph.D., presented the findings. Their research focuses on genetic variations that influence the effect of medicines on different people - an area of study called pharmacogenetics. Ultimately, the goal is to improve the way drugs are prescribed by identifying individuals who are likely to benefit from a specific medicine or who are at increased risk of serious side effects.

"Our data suggest that variations in genes that help metabolize irinotecan may be useful predictors of how well colorectal cancer patients respond to this drug and how severe side effects will be," Carlini said.

To see how genetic variations affected response and side effects, the laboratory analyzed DNA in blood samples taken during a multi-site clinical trial to test an investigational combination chemotherapy regimen for metastatic colorectal cancer. The patients received intravenous irinotecan once a week and twice-daily tablets of the drug capecitabine for two weeks of a three-week treatment cycle.

The researchers looked at a family of genes called UGTs (UDP-glucuronosyltransferases), involved in breaking down irinotecan within the body and ultimately disposing of it. "Our research indicates that patients specific UGT1A7 or UGT1A9 genotypes will get more anti-tumor response from the chemotherapy combination. What’s more, these patients should have fewer side effects," Carlini said.

There were no statistically significant associations between the other two UGT genes and either side effects or antitumor response. "In reality, physicians will soon be able to personalize cancer therapies based on the tumor’s characteristics and the genetic profile of the person," said Carlini. "The ultimate goal is to tailor treatment that offers the most anti-tumor activity with the fewest side effects."

In a separate study based on the same clinical trial, Fox Chase researchers also discovered a protein marker to help predict response to combination chemotherapy with capecitabine and irinotecan. Medical oncologist Neal J. Meropol will present these results at the ASCO annual meeting in a Gastrointestinal (Colorectal) Cancer Session on Sunday, June 6 between 8 a.m. and 12 noon (Abstract # 3520, Poster #11).

In addition to Blanchard and Meropol, Carlini’s colleagues in the study include Y.-M. Chen, Ph.D., T. Hill, and C. McGarry of Roche Labs, Nutley, N.J.; and P. J. Gold, M.D., of the Swedish Cancer Institute, Seattle, Wash.

Fox Chase Cancer Center was founded in 1904 in Philadelphia, Pa., as the nation’s first cancer hospital. In 1974, Fox Chase became one of the first institutions designated as a National Cancer Institute Comprehensive Cancer Center. Fox Chase conducts basic, clinical, population and translational research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at or call 1-888-FOX CHASE.

Karen C. Mallet | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>