Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Too Young to Die? Study Examines Risks of Being Male


In the years at the dangerous border between adolescence and adulthood, about three men die for every woman, according to a new University of Michigan study of the ratio of male to female mortality rates in 20 nations, including the United States.

The study, selected as a "hot topic talk" to be presented May 28 at the annual meeting of the American Psychological Society, also appears in the current issue of the journal Evolutionary Psychology.

"Being male is now the single largest demographic risk factor for early mortality in developed countries," said Daniel Kruger, lead author of the study and a social psychologist at the U-M Institute for Social Research (ISR), the world’s largest academic survey and research organization. ISR researcher Randolph Nesse, professor of psychiatry at the U-M Medical School, is the co-author of the study.

Funding for the analysis was provided by the National Institute of Mental Health.

Kruger and Nesse used data from the National Center for Health Statistics, the World Health Organization and the Human Mortality Database to examine the difference between male and female mortality rates for 11 leading causes of death across age groups in the United States. They also studied the same mortality rates over the course of the lifespan in 20 countries, and over the past 70 years in five countries: the United States, the United Kingdom, Sweden, France and Japan.

In the United States, they found that in the year 2000 males had higher mortality rates than females for all 11 causes of death across the lifespan. "The magnitude of the sex difference is most starkly summarized by the numbers of deaths before age 50," Kruger said. "For every 10 premature female deaths, 16 men died prematurely."

The overall ratio of U.S. male to female mortality rates increased sharply at adolescence, peaking at 2.94 from ages 20 to 24 and slowly decreasing to 1.46 from ages 75 to 79.

The highest male-female mortality ratio for a specific cause was 9.03 for suicide from ages 75 to 79, meaning that nine men that age killed themselves for every woman who did. The next highest male-female mortality ratios were for homicide (5.72) and non-automobile accidents (4.91) from ages 20 to 24.

The researchers also compared cross-national data from 20 countries, finding higher male than female mortality for nearly all ages with a substantial peak at sexual maturity.

"This is the stage of life when males of many species engage in high levels of risk-taking and competitive displays that tend to increase their reproductive success," Kruger said. "The higher degree of mating competition among males is the evolutionary reason why females live longer on average in most animal species."

Finally, Kruger and Nesse analyzed historical patterns of age-related male-female mortality starting in 1930 in the United Kingdom, the United States and Sweden, and beginning after World War II in France and Japan. In all five cultures, they found two pronounced peaks in male to female mortality ratios, both increasing markedly in the mid-20th century. The first peak is sharp and centers at the age of sexual maturity, while the second, more rounded peak reaches a maximum around age 65.

"The results confirm our expectations that evolved sex differences interact with aspects of current environments and cultures to result in considerably higher mortality rates for men than for women, especially in early adulthood and especially for external causes of death," Kruger said.

"If male mortality rates could be reduced to those for females, one-third of all male deaths under age 50 would be eliminated. Since these deaths result from complex interactions of sex, behavior and culture, simple solutions are unlikely. Still, the general tendency for males to take greater risks ties together many preventable causes of death and is a worthy focus for interventions."

Kara Gavin | University of Michigan
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>