Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learned social preference in zebrafish

25.05.2004


Using the zebrafish, a model organism widely used in genetic studies, researchers have found that when it comes to social interactions with other fish, individual zebrafish learn to prefer one fish color pattern over another according to their early experience with these patterns. The work extends the utility of zebrafish to studies of behavior and evolution and is reported by University of Texas researchers Raymond E. Engeszer, Dr. David M. Parichy, and Dr. Michael J. Ryan.



Social behavior has long been of interest to biologists and psychologists alike. The studies reported this week suggest that the extensive knowledge of zebrafish genetics will afford researchers an opportunity to see how genes, development, and environment lead to behaviors that mediate social interactions.

The investigators examined the way fish choose their consorts during the formation of loose social aggregates, called shoals, and they exploited the developmental genetic resources of this biomedical model organism to manipulate the appearance of the fish. Fish were chosen to have drastically different color patterns, either blue and gold stripes or an absence of stripes and a uniform mother-of-pearl color. This difference was the result of a single DNA base change in the fish’s genome. To determine whether genes or the environment determine individuals’ preferences, the investigators raised subject fish either with other fish of their own color or with fish of the alternate color. When subject fish were later allowed to choose which color of fish to associate with, they greatly preferred whichever color pattern they had been raised with, irrespective of their own color. This learned social preference could have enormous impacts on the survival and reproductive success of individual fish. This work represents a first step in using the zebrafish and the tools of developmental genetics to investigate long-standing questions concerning the impact of behavior on evolution.



Raymond E. Engeszer, Michael J. Ryan, and David M. Parichy: "Learned Social Preference in Zebrafish"

Published in Current Biology, Volume 14, Number 10, May 25, 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>