Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers advance fight against pancreatic cancer

17.05.2004


New studies show success in reducing tumor growth



Two Dartmouth medical studies have produced promising results in the fight against pancreatic cancer, one of the most deadly and aggressive forms of cancer, and may lead to the development of new, highly targeted therapies to manage previously untreatable tumors.

In two trials targeting some of the most challenging traits of pancreatic tumor cell growth, researchers from Dartmouth Medical School (DMS) and the Norris Cotton Cancer Center (NCCC) at Dartmouth-Hitchcock Medical Center (DHMC) have demonstrated success in slowing and preventing tumor development.


The NCCC research team was led by Dr. Murray Korc, a pioneer in early research on growth factor receptors in pancreatic cancer, and chair of the department of medicine at DMS and DHMC. An endocrinologist and cancer biologist, he focuses much of his research on the mechanisms that make pancreatic cancer so resilient and aggressive. Work reported in the May 15 issues of Clinical Cancer Research and Cancer Research addresses the team’s latest advances.

Pancreatic cancer is characteristic for its ability to spread quickly, while becoming increasingly resistant to traditional chemotherapy. Generally diagnosed in an advanced state, it is frequently inoperable. As a result, it is the fourth leading cause of cancer death in adults in the US, killing more than 30,000 Americans every year, says Korc.

"By the time the disease is diagnosed, pancreatic cancer cells have a huge growth advantage over normal cells, which enables them to grow and metastasize very quickly," said Korc. "Our research has focused on determining what factors enable the cells to grow at such a fast rate and then how to slow that rate down and actually suppress pancreatic tumor growth."

Korc likens the disease to speeding in a car with an accelerator that is stuck to the floor. "Naturally, you apply the brakes but they don’t work, so you begin pumping the brakes to slow the car down. The brakes are broken in pancreatic cancer but in addition, we found that the brake has been converted into an accelerator by the cancer cells. In essence, pumping the brakes gives you two accelerators."

In fact, said Korc, the inhibitory factors that have been proven to slow down the growth of normal cells, can often backfire and increase the spread of tumors in the pancreas, or in other words, change the brake into an accelerator.

In a feature article appearing in the May 15 edition of Clinical Cancer Research, Korc and Dr. Mitsuharu Fukasawa, a research associate in the department of medicine at DMS, reported a new, highly effective anti-angiogenic approach for treating pancreatic cancer. They focused on the over-expression of a molecule that hampers chemotherapeutic efforts in pancreatic cancer. The molecule, VEGF, is responsible for angiogenesis, a process that stimulates blood vessel formation. In pancreatic cancer cells, there is a 90-fold higher level of VEGF than in normal cells, which enables the cancer cells to grow and metastasize quickly and efficiently.

In this study, the researchers injected a protein sponge, VEGF-Trap, into mice bearing pancreatic tumors derived from four different human pancreatic cancer cells. They predicted the sponge would absorb most of the angiogenetic VEGF molecules, thereby slowing the blood vessel proliferation and suppressing tumor growth.

"The protein sponge completely suppressed pancreatic tumor growth," said Korc. "In all the tumors tested, there was a marked decrease in blood vessel formation, which is very exciting." The next step, he acknowledged, is to introduce this technology in humans, where it is desperately needed.

In the second study, published in Cancer Research, Korc and his research team, headed by his post-doctoral fellow Nicole Boyer Arnold, describe a novel mechanism for chemoresistance in pancreatic cancer. In their investigation, the team identified the pathways responsible for giving the pancreatic cancer cells a growth advantage and making them resistant to chemotherapeutic drugs. They focused on two molecules, Smad7 and thioredoxin, which are found in high quantities in many pancreatic tumors.

These molecules make signaling pathways abnormal so that when a drug is introduced to suppress cancer cell growth, these molecules allow the cancer cells to resist the drugs and to continue to grow. This chemo-resistance is a hallmark of aggressive cancers such as pancreatic cancer. "Now that we know this pathway exists, it will allow us and other investigators to try to figure out ways to interfere with this pathway to design new therapies for pancreatic cancer," said Korc. In future research, the research team will also introduce a molecular sponge to absorb certain over-expressed molecules that promote the expression of Smad7 and thioredoxin, in order to determine if this renders the cancer cells more responsive to therapy.

Although these studies are early, Korc is hopeful they will develop into clinical trials in the future. "The mortality rate (of pancreatic cancer) virtually equals incidence," he said. "Of the 31,000 people in the US that get it this year, 30,300 will die from it, and most patients die within six months. That is why we are excited about this research and hope that it will lead to more advances in the treatment of pancreatic cancer."


The studies were funded by the National Cancer Institute through two United States Public Health Service Grants awarded to Korc, and by a postdoctoral fellowship to DMS/NCCC researcher Nicole Boyer Arnold from the George E. Hewitt Foundation for Medical Research.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>