Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature or nuture? Understanding the underpinnings of childhood resilience

14.05.2004


Many children who grow up in poverty have higher levels of behavioral problems and lower IQ scores than children who grow up in middle class families. However, some children from poor family backgrounds are resilient -- that is, they behave better and score higher on intelligence tests than might be expected given the level of social and economic deprivation they have experienced.



Researchers have identified several protective factors that promote children’s resilience, including a child’s easy, sociable personality, a mother’s warmth toward her child, and a stimulating home environment. However, we still don’t know to what extent these protective factors and children’s resilience might be associated with a common genetic factor. It may be that the genes involved in promoting the protective factor are the same genes that promote child’s positive development under conditions of poverty. For instance, the genes that contribute to a mother’s emotional warmth could be the same genes she passes onto her child, which promote the child’s resilience. In this study, we tried to determine the degree to which genetic versus social-environmental influences explain children’s resilience against poverty.

We interviewed 1,116 mothers and their 5-year-old twins in the United Kingdom to assess the family’s level of socioeconomic hardship, the twins’ antisocial behavior at home, and their IQ. We also received reports from teachers about the twins’ behavior at school.


We identified children as "behaviorally resilient" if their actual score on antisocial behavior was unexpectedly lower (i.e., better) than the score predicted by their family’s level of socioeconomic deprivation. Additionally, we identified them as "cognitively resilient" if their IQ score was unexpectedly higher (i.e., better) than the score predicted by their family’s level of socioeconomic deprivation. Studying twins allowed us to compare the similarities between identical twin pairs, who share all their genes, and fraternal twin pairs, who share about half their genes. If the similarity in resilience between identical twins is greater than the similarity between fraternal twins, it suggests that genes influence resilience.

And that is just what we found--that children’s behavioral and cognitive resilience to poverty was influenced by their genetic makeup. This suggests that children themselves are agents in rising above their experience of poverty. For example, we found that children with a genetic disposition to be friendly, sociable, and outgoing had the most resilience against poverty.

Importantly, however, children’s resilience was also affected by their rearing environment. After controlling for genetic effects, we found that mothers who engaged in more stimulating activities with their twins helped promote their children’s resilience against poverty. This finding suggests that encouraging parents to engage in activities with their children (e.g., a long walk or a museum visit) can help protect children’s intellectual development from the damaging effects of socioeconomic deprivation.

Thus, both genetic and social-environmental sources of protection are involved in helping children overcome the hardship of growing up poor.

Karen Melnyk | EurekAlert!
Further information:
http://www.apa.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>