Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature or nuture? Understanding the underpinnings of childhood resilience

14.05.2004


Many children who grow up in poverty have higher levels of behavioral problems and lower IQ scores than children who grow up in middle class families. However, some children from poor family backgrounds are resilient -- that is, they behave better and score higher on intelligence tests than might be expected given the level of social and economic deprivation they have experienced.



Researchers have identified several protective factors that promote children’s resilience, including a child’s easy, sociable personality, a mother’s warmth toward her child, and a stimulating home environment. However, we still don’t know to what extent these protective factors and children’s resilience might be associated with a common genetic factor. It may be that the genes involved in promoting the protective factor are the same genes that promote child’s positive development under conditions of poverty. For instance, the genes that contribute to a mother’s emotional warmth could be the same genes she passes onto her child, which promote the child’s resilience. In this study, we tried to determine the degree to which genetic versus social-environmental influences explain children’s resilience against poverty.

We interviewed 1,116 mothers and their 5-year-old twins in the United Kingdom to assess the family’s level of socioeconomic hardship, the twins’ antisocial behavior at home, and their IQ. We also received reports from teachers about the twins’ behavior at school.


We identified children as "behaviorally resilient" if their actual score on antisocial behavior was unexpectedly lower (i.e., better) than the score predicted by their family’s level of socioeconomic deprivation. Additionally, we identified them as "cognitively resilient" if their IQ score was unexpectedly higher (i.e., better) than the score predicted by their family’s level of socioeconomic deprivation. Studying twins allowed us to compare the similarities between identical twin pairs, who share all their genes, and fraternal twin pairs, who share about half their genes. If the similarity in resilience between identical twins is greater than the similarity between fraternal twins, it suggests that genes influence resilience.

And that is just what we found--that children’s behavioral and cognitive resilience to poverty was influenced by their genetic makeup. This suggests that children themselves are agents in rising above their experience of poverty. For example, we found that children with a genetic disposition to be friendly, sociable, and outgoing had the most resilience against poverty.

Importantly, however, children’s resilience was also affected by their rearing environment. After controlling for genetic effects, we found that mothers who engaged in more stimulating activities with their twins helped promote their children’s resilience against poverty. This finding suggests that encouraging parents to engage in activities with their children (e.g., a long walk or a museum visit) can help protect children’s intellectual development from the damaging effects of socioeconomic deprivation.

Thus, both genetic and social-environmental sources of protection are involved in helping children overcome the hardship of growing up poor.

Karen Melnyk | EurekAlert!
Further information:
http://www.apa.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>