Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s a gamble: dopamine levels tied to uncertainty of rewards

10.05.2004


Researchers, using a new combination of techniques, have discovered that dopamine levels in our brains vary the most in situations where we are unsure if we are going to be rewarded, such as when we are gambling or playing the lottery.


David Zald
©Vanderbilt University



The research results, "Dopamine Transmission in the Human Striatum during Monetary Reward Tasks," were published online April 28 in the Journal of Neuroscience.

Dopamine has long been known to play an important role in how we experience rewards from a variety of natural sources, including food and sex, as well as from drugs such as cocaine and heroin, but pinning down the precise conditions that cause its release has been difficult.


"Using a combination of techniques, we were actually able to measure release of the dopamine neurotransmitter under natural conditions using monetary reward," said David Zald, assistant professor of psychology at Vanderbilt University.

Zald believes the primary significance of the study is the possibilities it raises for future research on measuring what causes us to experience reward from a variety of sources and what happens in our brains when we are disappointed in our quest for those rewards. The research lays a foundation for a better understanding of what happens in the brain during unpredictable reward situations such as gambling and offers promise for exploring the chemical foundation of problems such as gambling addiction.

"We’re moving to a point where we can measure what’s happening to people’s neurotransmitter systems in a way that we haven’t been able to do before," he said.

Zald and his colleagues used positron emission topography (PET scanners) to view brain activity in nine human research subjects who had been injected with a chemical that binds to dopamine receptors in the brain, but is less able to bind when the brain is releasing dopamine. A decrease in binding to the receptors is associated with an increase in dopamine release, while an increase in binding indicates reduced release of dopamine. This technique allows researchers to study the strength and location of dopamine release more precisely than has previously been possible.

The team studied the subjects under three different scenarios. Under the first scenario, the subject selected one of four cards and knew a monetary reward of $1 was possible but did not know when it would occur. During the second scenario, subjects knew they would receive a reward with every fourth card they selected. Under the third scenario, subjects chose cards but did not receive or expect any rewards.

Zald and his team found that over the course of the experiment, dopamine transmission increased more in one part of the brain in the unpredictable first scenario, while showing decreases in neighboring regions. In contrast, the receipt of a reward under the predictable second scenario did not result in either significant increases or decreases in dopamine transmission.

"It’s probably not just the receipt of money, but the conditions under which it occurs which makes a difference," Zald explained.

The increase and suppression were localized to specific, separate regions of the brain, illustrating that variable reward scenarios, like gambling, have a complex effect on the brain.

"The most interesting thing we found is that there were areas that showed increased dopamine release during the unpredictable condition, and there were also other areas showing decreased dopamine release," Zald said.

"So other than just dopamine as reward, there is a more complicated action occurring."

The data was collected in Montreal and analyzed in collaboration with Gabriel Dichter at Vanderbilt; Isabelle Boileau and Alain Dagher at McGill University, Montreal; Wael El-Dearedy at Liverpool John Moores University, United Kingdom; Roger Gunn at Glaxo SmithKline, Greenford, United Kingdom; and Francis McGlone, Unilever Research, Wirral, United Kingdom.

The research was supported by grants from Unilever Research and the National Science Foundation. Zald is a member of the Vanderbilt Kennedy Center for Research on Human Development.

Media contact: Melanie Catania, (615) 322-NEWS
Melanie.catania@vanderbilt.edu

Melanie Catania | Vanderbilt University
Further information:
http://sitemason.vanderbilt.edu/newspub/bjfTyg?id=11881

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>