Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soy processing influences estrogen-dependent breast cancer growth in mice

07.05.2004


Highly purified soy foods and soy supplements marketed in the United States may stimulate the growth of pre-existing estrogen-dependent breast tumors, according to a study done at the University of Illinois at Urbana-Champaign.



"Soy has been correlated with low rates of breast cancer in Asian populations, but soy foods in Asia are made from minimally processed soybeans or defatted, toasted soy flour, which is quite different from soy products consumed in the U.S.," said William G. Helferich, a professor of food science and human nutrition, in a study presented online May 6 in advance of regular publication by the journal Carcinogenesis.

"Isoflavone-containing products consumed in the U.S. may have lost many of the biologically active components in soy, and these partially purified isoflavone-containing products may not have the same health benefits as whole soy foods," he said.


Soy isoflavone products are marketed as dietary estrogens to women over age 50 as a natural alternative to hormone replacement therapy (HRT), but this is the age group in which most breast cancers occur.

Seventy-five percent of breast cancer cases are diagnosed in women over 50, and the majority of these cases are estrogen-dependent. For these women, Helferich said, consumption of highly processed isoflavone products may pose a risk.

Helferich used an animal model that has been used extensively to evaluate breast cancer therapies such as tamoxifen. "The results of this preclinical investigation are especially relevant to postmenopausal women with estrogen-responsive breast cancers who are looking for alternatives to HRT," he said.

In the study, mice were fed equal concentrations of the soy isoflavone genistein, allowing Helferich to determine the influences that various bioactive soy compounds had on genistein’s ability to stimulate estrogen-dependent breast tumor growth. "As bioactive compounds were removed, we observed an increase in estrogen-dependent tumor growth," he said.

If genistein had been the only biologically active compound, all diets would have resulted in similar tumor growth, but that was not the case, he said.

A soy flour and mixed isoflavones diet and a mixed isoflavone diet each contained equal amounts of genistein, but differed in the amount of other bioactive components originally present in the soy flour. Tumors neither grew nor regressed in animals fed these diets. "The minimally processed soy flour used in these diets is more like the soy foods in the Asian diet," Helferich said.

"Dietary soy products that contained isoflavones in more purified forms were associated with greater tumor growth. These products are similar to the materials used in isoflavone-containing dietary supplements, which is how many Americans consume these compounds," he added.

Other researchers contributing to the study were Clinton D. Allred, Kimberly F. Allred, Young H. Ju, Tracy S. Goeppinger, and Daniel R. Doerge.


The study was funded by grants from the National Institutes of Health and USDA.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>