Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists uncover how brain retrieves and stores older memories


Scientists at The Hospital for Sick Children (Sick Kids) and UCLA have pinpointed for the first time a region of the brain responsible for storing and retrieving distant memories. This research is reported in the May 7, 2004 issue of the journal Science.

"It was previously known that the hippocampus processes recent memory, but that the hippocampus did not store memories permanently. We were able to determine that it is the anterior cingulate cortex where older, or lifelong, memories are stored and recalled," said Dr. Paul Frankland, the study’s co-lead author, a scientist in the Sick Kids Research Institute, and assistant professor of physiology at the University of Toronto.

The formation of new memories is thought to involve the strengthening of synaptic connections between groups of neurons. Remembering involves the reactivation of the same group, or network, of neurons. As memories age, the networks gradually change. Initially, memories for everyday life events appear to depend on networks in the region of the brain called the hippocampus. However, over time, these memories become increasingly dependent upon networks in the region of the brain called the cortex.

"We believe there is active interaction between the hippocampus and cortex, and that the transfer process of memories between these two regions in the brain occurs over several weeks, and likely during sleep," added Dr. Frankland, holder of the Canada Research Chair in Cognitive Neurobiology.

The researchers used a series of strategies with mice, including a mouse model with an altered form of a gene called CaMkinase II, which eliminates the ability to recall old memories, to identify the role of the anterior cingulate cortex.

"Most people define memory as their collective lifetime experiences. These memories colour who we are, yet until now, we’ve been mystified by how the brain saves and retrieves them," said Dr. Alcino Sliva, the study’s principal investigator and professor of neurobiology, psychiatry and psychology at the David Geffen School of Medicine at UCLA. "Now that we know where to look, we’re one step closer to developing drugs to target genes or processes of the brain that may be related to memory disorders."

Other authors on the paper include Dr. Bruno Bontempi, co-lead author, Dr. Lynn Talton, and Dr. Leszek Kaczmarek. The US National Institute on Aging funded the study.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit

Laura Greer | University of Toronto
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>