Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover how brain retrieves and stores older memories

07.05.2004


Scientists at The Hospital for Sick Children (Sick Kids) and UCLA have pinpointed for the first time a region of the brain responsible for storing and retrieving distant memories. This research is reported in the May 7, 2004 issue of the journal Science.



"It was previously known that the hippocampus processes recent memory, but that the hippocampus did not store memories permanently. We were able to determine that it is the anterior cingulate cortex where older, or lifelong, memories are stored and recalled," said Dr. Paul Frankland, the study’s co-lead author, a scientist in the Sick Kids Research Institute, and assistant professor of physiology at the University of Toronto.

The formation of new memories is thought to involve the strengthening of synaptic connections between groups of neurons. Remembering involves the reactivation of the same group, or network, of neurons. As memories age, the networks gradually change. Initially, memories for everyday life events appear to depend on networks in the region of the brain called the hippocampus. However, over time, these memories become increasingly dependent upon networks in the region of the brain called the cortex.


"We believe there is active interaction between the hippocampus and cortex, and that the transfer process of memories between these two regions in the brain occurs over several weeks, and likely during sleep," added Dr. Frankland, holder of the Canada Research Chair in Cognitive Neurobiology.

The researchers used a series of strategies with mice, including a mouse model with an altered form of a gene called CaMkinase II, which eliminates the ability to recall old memories, to identify the role of the anterior cingulate cortex.

"Most people define memory as their collective lifetime experiences. These memories colour who we are, yet until now, we’ve been mystified by how the brain saves and retrieves them," said Dr. Alcino Sliva, the study’s principal investigator and professor of neurobiology, psychiatry and psychology at the David Geffen School of Medicine at UCLA. "Now that we know where to look, we’re one step closer to developing drugs to target genes or processes of the brain that may be related to memory disorders."

Other authors on the paper include Dr. Bruno Bontempi, co-lead author, Dr. Lynn Talton, and Dr. Leszek Kaczmarek. The US National Institute on Aging funded the study.


The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.

Laura Greer | University of Toronto
Further information:
http://www.utoronto.ca
http://www.sickkids.ca

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>