Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human brain works heavy statistics learning language

05.05.2004


A team at the University of Rochester has found that the human brain makes much more extensive use of highly complex statistics when learning a language than scientists ever realized. The research, appearing in a recent issue of Cognitive Psychology, shows that the human brain is wired to quickly grasp certain relationships between spoken sounds even though those relationships may be so complicated they’re beyond our ability to consciously comprehend.



"We’re starting to learn just how intuitively our minds are able to analyze amazingly complex information without our even being aware of it," says Elissa Newport, professor of brain and cognitive sciences at the University and lead author of the study. "There is a powerful correlation between what our brains are able to do and what language demands of us."

Newport and Richard Aslin, professor of brain and cognitive sciences, began by looking at how people are able to recognize the division between spoken words when spoken language is really a stream of unbroken syllables. They wanted to know how it is that we perceive breaks between spoken words, when in fact there are no pauses. This is why it often seems as if speakers of foreign languages are talking very quickly; we don’t perceive pauses.


So how is a baby supposed to make out where one word begins and another ends? Newport and Aslin devised a test where babies and adults listened to snippets of a synthetic language: a few syllables arranged into nonsense words and played in random order for 20 minutes. During that time, the listeners were taking in information about the syllables, such as how often each occurred, and how often they occurred in relation to other syllables. For instance, in the real words "pretty baby," the syllable "pre" is followed by "ty," which happens more frequently in English than the syllable "ty" being followed by "ba"--thus the brain notes that "ty" is more likely to be associated with "pre" than with "ba," and so we hear a pause between those two syllables.

After listening to the synthesized string of syllables for the full 20 minutes, adults were played some of the invented words along with some words made up of syllables from the beginning and ending of words--like "ty-ba." More than 85 percent of the time, adults were able to recognize words from non-words. Five-year-olds also reacted definitively to words and non-words, showing that the human mind is wired to statistically track how often certain sounds arise in relationship to other sounds.

"If you were given paper and a calculator, you’d be hard-pressed to figure out the statistics involved," says Newport. "Yet after listening for a while, certain syllables just pop out at you and you start imagining pauses between the ’words.’ It’s a reflection of the fact that somewhere in your brain you’re actually absorbing and processing a staggering amount of information."

Newport and Aslin take the research a step farther in the Cognitive Psychology piece. Language does not only consist of relationships between adjacent syllables or other language elements. For instance, in the sentence, "He is going," the element "is" is linked to the element "ing," even though they are not adjacent to each other. Newport and Aslin devised a new, more complex, synthetic language where three-syllable words had constant first and last syllables, but the middle syllable was interchangeable. Despite being somewhat similar to the original test, "people were terrible at this," notes Newport. One test subject never identified a single pattern, despite taking the test numerous times.

Though the new test was significantly more complicated than the first, Newport and Aslin were surprised that people performed so poorly. The team looked carefully at the non-adjacent aspects of languages, like Hebrew, which is replete with non-adjacent elements, and discovered that while whole syllables were rarely related in this way, vowels and consonants often were. They restructured the test so that the invented words had consistent consonants and variable vowels--like "ring", "rang," and "rung." Immediately, test scores skyrocketed. People were able to distinguish the regularity of certain consonant relationships and use them to properly divide the stream of sounds into words even though the statistics involved were at least as complicated as the earlier test that was universally failed.

Even switching the roles of consonants and vowels so that the vowels remained steady as the consonants varied, resulted in the test subjects picking out the words with great accuracy. Turkish, as an example, uses this "vowel harmony" quite regularly.

"These results suggest that human learning ability is not just limited to a few elementary computations, but encompasses a variety of mechanisms," says Newport. "A question to explore now is: How complex and extensive are these learning mechanisms, and what kinds of computational abilities do people bring to the process of learning languages?"


The research was funded by the National Institutes of Health and the National Science Foundation.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>