Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human brain works heavy statistics learning language

05.05.2004


A team at the University of Rochester has found that the human brain makes much more extensive use of highly complex statistics when learning a language than scientists ever realized. The research, appearing in a recent issue of Cognitive Psychology, shows that the human brain is wired to quickly grasp certain relationships between spoken sounds even though those relationships may be so complicated they’re beyond our ability to consciously comprehend.



"We’re starting to learn just how intuitively our minds are able to analyze amazingly complex information without our even being aware of it," says Elissa Newport, professor of brain and cognitive sciences at the University and lead author of the study. "There is a powerful correlation between what our brains are able to do and what language demands of us."

Newport and Richard Aslin, professor of brain and cognitive sciences, began by looking at how people are able to recognize the division between spoken words when spoken language is really a stream of unbroken syllables. They wanted to know how it is that we perceive breaks between spoken words, when in fact there are no pauses. This is why it often seems as if speakers of foreign languages are talking very quickly; we don’t perceive pauses.


So how is a baby supposed to make out where one word begins and another ends? Newport and Aslin devised a test where babies and adults listened to snippets of a synthetic language: a few syllables arranged into nonsense words and played in random order for 20 minutes. During that time, the listeners were taking in information about the syllables, such as how often each occurred, and how often they occurred in relation to other syllables. For instance, in the real words "pretty baby," the syllable "pre" is followed by "ty," which happens more frequently in English than the syllable "ty" being followed by "ba"--thus the brain notes that "ty" is more likely to be associated with "pre" than with "ba," and so we hear a pause between those two syllables.

After listening to the synthesized string of syllables for the full 20 minutes, adults were played some of the invented words along with some words made up of syllables from the beginning and ending of words--like "ty-ba." More than 85 percent of the time, adults were able to recognize words from non-words. Five-year-olds also reacted definitively to words and non-words, showing that the human mind is wired to statistically track how often certain sounds arise in relationship to other sounds.

"If you were given paper and a calculator, you’d be hard-pressed to figure out the statistics involved," says Newport. "Yet after listening for a while, certain syllables just pop out at you and you start imagining pauses between the ’words.’ It’s a reflection of the fact that somewhere in your brain you’re actually absorbing and processing a staggering amount of information."

Newport and Aslin take the research a step farther in the Cognitive Psychology piece. Language does not only consist of relationships between adjacent syllables or other language elements. For instance, in the sentence, "He is going," the element "is" is linked to the element "ing," even though they are not adjacent to each other. Newport and Aslin devised a new, more complex, synthetic language where three-syllable words had constant first and last syllables, but the middle syllable was interchangeable. Despite being somewhat similar to the original test, "people were terrible at this," notes Newport. One test subject never identified a single pattern, despite taking the test numerous times.

Though the new test was significantly more complicated than the first, Newport and Aslin were surprised that people performed so poorly. The team looked carefully at the non-adjacent aspects of languages, like Hebrew, which is replete with non-adjacent elements, and discovered that while whole syllables were rarely related in this way, vowels and consonants often were. They restructured the test so that the invented words had consistent consonants and variable vowels--like "ring", "rang," and "rung." Immediately, test scores skyrocketed. People were able to distinguish the regularity of certain consonant relationships and use them to properly divide the stream of sounds into words even though the statistics involved were at least as complicated as the earlier test that was universally failed.

Even switching the roles of consonants and vowels so that the vowels remained steady as the consonants varied, resulted in the test subjects picking out the words with great accuracy. Turkish, as an example, uses this "vowel harmony" quite regularly.

"These results suggest that human learning ability is not just limited to a few elementary computations, but encompasses a variety of mechanisms," says Newport. "A question to explore now is: How complex and extensive are these learning mechanisms, and what kinds of computational abilities do people bring to the process of learning languages?"


The research was funded by the National Institutes of Health and the National Science Foundation.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>