Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron-deficient infants score worse on cognitive and motor tests as teens

05.05.2004


Teens who suffered iron deficiency as infants are likely to score lower on cognitive and motor tests, even if that iron deficiency was identified and treated in infancy, a new University of Michigan study shows.



Betsy Lozoff, who has studied iron deficiency for nearly three decades, followed Costa Rican children who were diagnosed with severe, chronic iron deficiency when they were 12-23 months old and were treated with iron supplements.

She and her collaborators examined 191 children in working- to middle-class families at 5 years, 11-14 years and again at 15-17, and found the iron-deficient babies grew up to lag their peers in both motor and mental measures.


Lozoff is scheduled to present "Longitudinal Analysis of Cognitive and Motor Effects of Iron Deficiency in Infancy" at the Pediatric Academic Societies’ annual meeting in San Francisco May 3. It is one of six research projects Lozoff participated in that are scheduled for presentations at the meeting, which runs May 1-4.

Children who had good iron status as babies showed better motor skills than those who had been iron deficient, said Lozoff, director of the Center for Human Growth and Development at the University of Michigan and a professor in the U-M Department of Pediatrics and Communicable Diseases. That gap remained throughout childhood and adolescence. "There is no evidence of catch up."

But even worse were the cognitive measures: children who had previously suffered iron deficiency not only lagged behind their peers, but the difference actually increased over time. They scored about six points lower on cognitive tests at age 1-2 years, and 11 points lower at age 15-18 years.

The gap was even more pronounced for children of families with low socioeconomic status, lower stimulation in the home or mothers lower in IQ. For children with good iron status, family conditions did not seem to affect their cognitive test scores. For formerly iron deficient children, however, those in better family conditions started a little lower than peers and held there, while those in poorer family conditions started lower than their peers and then declined further.

"It looks like good iron status helps buffers a bad environment," Lozoff said, "but chronic, severe iron deficiency, combined with poor family conditions, really hurts children’s test performance."

Since this study followed children through their adolescence, Lozoff’s team wondered whether the same children accounted for the lower test scores at every age.

They looked at the good iron status group and broke their infant test scores into three levels: high, medium and low. Those children who scored well initially tended to score slightly worse later, and those who scored worse initially tended to see their scores increase later---what is described by statisticians as regression to the mean, or tending toward the average over time.

But for the iron deficient children, also split into high, medium and low infant test scores, there were decreases in test scores over time at all levels. Lozoff said this points out that regardless of where the children started on the test score spectrum, they still showed a decline as they got older.

Lozoff emphasized that these results are not a function of extreme poverty or general malnutrition. "This is a uniformly literate population," she said. "The children are at the U.S. 50th percentile for growth."

Lozoff’s collaborators on the study were Julia Smith, Tal Liberzon, Rosa Angulo-Barroso, Agustin Calatroni and Elias Jimenez.

Because this study follows children who received treatment for their iron deficiency, and yet they still showed ill effects up to adulthood, Lozoff said it emphasizes the importance of preventing infant iron deficiency in the first place.

Iron-deficiency anemia affects about 25 percent of infants worldwide and twice as many have iron deficiency without anemia. Many poor and minority children in the United States are also affected. During development, iron performs a variety of important roles. Iron is required to build myelin, which covers nerves and helps them share signals more efficiently, for example. Iron is also needed for brain chemicals, such as the neurotransmitter dopamine, which sends signals within the brain. Iron deficiency also differentially affects the hippocampus, which is involved in certain types of memory and other important processes.

Babies typically get their iron from the mother during pregnancy and from mother’s milk, but their rapid growth demands even more iron after about the first 4-6 months. Other foods infants often eat, such as soft cereals, cow’s milk and fruits, are poor sources of iron. In the United States, fortifying baby formula and cereals with iron has helped a great deal, but these have not been adopted internationally, and iron deficiency remains more common elsewhere.

Colleen Newvine | EurekAlert!
Further information:
http://aappolicy.aappublications.org/cgi/content/full/pediatrics;104/1/119
http://www.umich.edu/~chgdwww/faculty/lozoff.html
http://www.pas-meeting.org/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>