Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting the gene expression base-line for breast cancer research

03.05.2004


For several years, scientists have attempted to identify gene expression changes, using microarrays or ’DNA chips’, in order to understand and predict breast cancer onset, progression, and clinical outcome. Although important insights into breast cancer have been drawn from determining the expression ’profiles’ of thousands of genes in tumors, the interpretation of experimental results has been complicated by the absence of knowledge about the gene expression in ’normal’, non-cancerous, breast cells. However in a paper published today in the journal Cancer Research, a team of scientists from The Breakthrough Toby Robins Breast Cancer Research Centre at The Institute of Cancer Research (ICR) in London, and the Breast Cancer Laboratory of Ludwig Institute for Cancer Research (LICR) and University College London report that they have now elucidated the expression profiles of over 6000 genes in the two primary types of normal breast cells.



The majority of breast cancers originate in an internal structure of the breast, the terminal duct-lobular unit, which is comprised of two different types of cell; the inner ’luminal’ cells, potential milk-secreting cells, in which cancerous genetic changes occur; and the surrounding basal layer of contractile ’myoepithelial’ cells. The LICR/Breakthrough team separated and purified the two cell types from material from breast reduction surgery, and showed that the cell types have distinct and quite different gene expression profiles.

"The problem is that the vast majority of breast cancer experiments have used tumor samples because that was usually the only material available," explains LICR’s Dr. A. Munro Neville, one of the senior authors of the study. "But tumors actually have different mixtures of normal luminal cells, normal myoepithelial cells, and cancer cells. Now we not only know that these cells have very different gene expression changes, we actually know the base-line expression of genes in both the normal cell types. So we can go back through all the data from the experiments with tumor samples, and discriminate between the genetic changes due to cell type differences and genetic changes due to cancer." Another important finding from the study was the identification of differences between luminal cells taken from primary breast samples and luminal cells cultured in the laboratory to which, for many ethical and logistical reasons, scientists frequently have to resort when performing experiments. The LICR/Breakthrough study results sound a cautionary warning for interpreting microarray data from cultured cells, and may also be helpful in determining between real experimental observations and artefacts relating to in vitro cell culture.


The results will also help to determine smaller and more accurate classifiers of different types of tumor. Microarray analyses have previously been used to distinguish between sub-classes of breast tumors based on the differential expression of many hundreds of genes. For example, one sub-class of tumor was identified as ’basal-like’ because the tumors expressed a series of genes thought to be expressed in myoepithelial, but not luminal cells. The basal-like tumors appeared to be more aggressive, and a retrospective study showed that those patients with basal-like tumors had a poorer prognosis than those with another sub-class. Applying the base-line dataset from the normal cells to the study that originally proposed the classification, allowed the LICR/Breakthrough team to identify a handful of critical ’marker’ genes that may be better able to prospectively diagnose tumor sub-classes, and confer independent prognostic information. These markers might also indicate possible avenues of therapy.

Importantly, according to Dr. Neville, the generation of this more accurate dataset may also have a major impact on patient care. "In order to discriminate between different types of breast cancers in the pathology lab, the surgeon often has to take a sample large enough to incorporate the basal myoepithelial cell layer. If, one day, we could use a fine needle biopsy in conjunction with the novel myoepithelial markers we’ve identified, we could not only potentially improve diagnosis, but also our therapeutic approach."


This study was conducted by researchers from: The Breakthrough Toby Robins Breast Cancer Research Centre at the Institute of Cancer Research, London, UK; the Breast Cancer Laboratory of the University College London Branch of the Ludwig Institute for Cancer Research and University College London, London, UK; Istituto di Anatomia Patologica, Università di Sassari, Italy; Servizio Epidemiologia, Azienda USL 1, Sassari, Italy; Istituto di Chimica Biomolecolare, Alghero, Italy; and The Royal Marsden Hospital, London, UK.

Sarah L. White | EurekAlert!
Further information:
http://www.licr.org/

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>