Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive but ubiquitous microbe fingered as gum disease culprit in Stanford study

23.04.2004


Even biology majors may not have heard much about archaea. Along with bacteria and eukarya (which encompass every organism from fungi to mammals), the elusive microbes make up one of the three domains of life. Now researchers at the Stanford University School of Medicine have for the first time tied a specific disease to one of these unfamiliar organisms.



"It’s not surprising that no one has really heard about them; archaea have still not even penetrated mainstream biology textbooks," said David Relman, MD, associate professor of medicine (infectious diseases) and of microbiology and immunology. There are, however, at least as many of them as there are bacteria, he said.

Archaea look a lot like bacteria, but appearances can be deceiving. Genetically and biochemically they are as different from bacteria as bacteria are from humans. The microbes live in many extreme environments - from hot springs to salt lakes to submarine volcanoes - but also within animals, including the human colon, vagina and mouth.


"To me it is one of those fundamental puzzles: they are everywhere and, given that we must be exposed to them somewhat frequently, if not all the time, why is it that we can’t name one disease-causing member of this enormous domain?" Relman wondered. He and his group at the Veterans Affairs Palo Alto Health Care System have shown a never-before-known connection between the abundance of archaea and the severity of a human gum disease called periodontitis.

Chronic periodontitis, which affects about one-third of Americans, may result in tooth loss and is thought to play a role in a range of conditions including atherosclerosis, stroke and early delivery of low birth-weight infants. While there is a general consensus that bacteria play a role in gum disease, no single microbe has been implicated as the culprit.

Relman and members of his lab embarked on a comprehensive, controlled study of the archaea found in the subgingival crevice - the deep gap between the gums and teeth - where periodontitis begins. They rigorously analyzed samples from 58 patients’ mouths taken by their collaborator, Gary Armitage, DDS, at the UC-San Francisco School of Dentistry, and found that more than one-third of the periodontitis patients had archaea in their diseased subgingival spaces, but nowhere else in their mouths. In addition, the relative abundance of archaea correlated with disease severity. Their findings are published in this week’s issue of the Proceedings of the National Academy of Sciences.

"Of course we’d ultimately like to say archaea caused disease, but it’s a horse-and-cart problem right now because we haven’t shown that the archaea come before the disease," Relman said. In the future, he noted, they will collect specimens repeatedly from the same spot in the subgingival pocket in hopes of being able to pinpoint the moment when the archaea start to increase in number and then determine whether that predicts the later development of the disease.

The paper’s first author, Paul Lepp, PhD, research associate in microbiology and immunology, explained that while a third of the periodontitis sufferers harbored archaea, many of the others had high levels of bacteria that - like archaea - consume hydrogen. Hydrogen consumption creates a more hospitable environment for bacteria long known to play a role in gum disease.

The group speculates that archaea may not directly cause periodontal disease. Rather, the microbes may indirectly contribute to it by helping other organisms - in this case, gum-damaging bacteria - grow more productively. Lepp said they are now looking for other hydrogen consumers to test their theory.

"In my mind, it’s increasingly clear that the disease may be the result of a community disturbance rather than the presence or absence of a particular organism," Relman said.

Relman also sees a potentially broader side to this research. "Maybe we should look a little harder for evidence of archaea as promoting or causing other diseases. We certainly have them in our bodies and we are exposed to them, so the archaea have the opportunity to cause disease if they are capable of doing so. We haven’t been looking for them so we wouldn’t know."


Other Stanford researchers involved in this study include graduate student Mary Brinig and postdoctoral scholar Cleber Ouverney, PhD, in microbiology and immunology, and research assistant Katherine Palm, in the division of infectious diseases and geographic medicine. This study was funded by a grant from the National Institute of Dental and Craniofacial Research, one of the National Institutes of Health, along with grants from the Ellison Medical Foundation and the University Exploratory Research Program of Procter & Gamble.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>