Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging study reveals brain function of poor readers can improve

20.04.2004


A brain imaging study has shown that, after they overcome their reading disability, the brains of formerly poor readers begin to function like the brains of good readers, showing increased activity in a part of the brain that recognizes words. The study appears in the May 1 Biological Psychiatry and was funded by the National Institute of Child Health and Human Development (NICHD), one of the National Institutes of Health.



"These images show that effective reading instruction not only improves reading ability, but actually changes the brain’s functioning so that it can perform reading tasks more efficiently," said Duane Alexander, M.D., Director of the NICHD.

The research team was led by Bennett Shaywitz, M.D., and Sally Shaywitz, M.D, of Yale University, in New Haven, Connecticut. Other authors of the study were from Syracuse University, in Syracuse, New York; Vanderbilt University, in Nashville, Tennessee; and the NICHD.


According to Dr. Sally Shaywitz, the results show that "Teaching matters and good teaching can change the brain in a way that has the potential to benefit struggling readers."

Along with testing the children’s reading ability, the researchers used functional magnetic resonance imaging (fMRI), a sophisticated brain imaging technology, to observe the children’s brain functioning as they read.

In all, 77 children between the ages of 6 and about 9 and ½ took part in the study. Of these, 49 had difficulty reading, and 29 children were good readers. Of the 49 poor readers, 12 received the standard instruction in reading that was available through their school systems. The remaining 37 were enrolled in an intensive reading program based on instruction in phonemic awareness and phonics.

In the study, the 37 poor readers in the intensive reading program outpaced the 12 poor readers in the standard instruction groups, making strong gains in three measures of reading skill: accuracy, fluency, and comprehension. These gains were still apparent when the children were tested again a year later. Moreover, fMRI scans showed that the brains of the 37 formerly poor readers began functioning like the brains of good readers. Specifically, the poor readers showed increased activity in an area of the brain that recognizes words instantly without first having to decipher them.

The intensive reading program the 37 children took had strong components in phonemic awareness and phonics. Phonemic awareness refers to the ability to identify phonemes, the individual sounds that make up spoken words. The word "bag," for example, is made up of three such elemental units of speech, which can be represented as bbb, aaa, and ggg. The brain strings together the 40 phonemes making up the English language to produce hundreds and thousands of words. In speech, this process is unconscious and automatic.

Beginning in the 1970s, NICHD-funded researchers learned that developing a conscious awareness of the smaller sounds in words was essential to mastering the next step in learning to read, phonics. Phonics refers to the ability to match spoken phonemes to the individual letters of the alphabet that represent them. Once children master phonics, the NICHD-funded studies showed, they could make sense of words they haven’t seen before, without first having to memorize them. Further NICHD-supported research found that instruction in phonemic awareness was an essential part of a comprehensive program in reading instruction that could help most poor readers overcome their disability.

In the 1990s, the Shaywitzes had used fMRI to learn that reading ability resides in the brain’s left half, or hemisphere. Within the hemisphere, three brain regions work together to control reading. In the left front of the brain, one area recognizes phonemes. Further back, another brain area "maps" phonemes to the letters that represent them. Still another brain area serves as a kind of long-term storage system. Once a word is learned, this brain region recognizes it automatically, without first having to decipher it phonetically.

Poor readers, the researchers had learned in the earlier studies, have difficulty accessing this automatic recognition center. Instead, they rely almost exclusively on the phoneme center and the mapping center. Each time poor readers see a word, they must puzzle over it, as if they were seeing it for the first time.

In the current study, the researchers discovered that, as the 37 poor readers progressed through their instruction program, their brains began to function more like the brains of good readers. Specifically, the brains of these children showed increased activation in the automatic recognition center.

"This study represents the fruition of decades of NICHD-supported reading research," said G. Reid Lyon, Ph.D, Chief of NICHD’s Child Development and Behavior Branch. "The findings show that the brain systems involved in reading respond to effective reading instruction."


The NICHD is part of the National Institutes of Health (NIH), the biomedical research arm of the federal government. NIH is an agency of the U.S. Department of Health and Human Services. The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. NICHD publications, as well as information about the Institute, are available from the NICHD Web site, http://www.nichd.nih.gov, or from the NICHD Information Resource Center, 1-800-370-2943; e-mail NICHDInformationResourceCenter@mail.nih.gov.

Robert Bock | NIH/NICHD
Further information:
http://www.nichd.nih.gov

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>