Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe link between nanotechnology and health

07.04.2004


Rochester expert warns of toxicity in new wave of science



Nanotechnology, a science devoted to engineering things that are unimaginably small, may pose a health hazard and should be investigated further, warns a University of Rochester scientist and worldwide expert in the field, who received a $5.5 million grant to conduct such research.

Günter Oberdörster, Ph.D., professor of Toxicology in Environmental Medicine and director of the university’s EPA Particulate Matter Center, has already completed one study showing that inhaled nano-sized particles accumulate in the nasal cavities, lungs and brains of rats. Scientists speculate this buildup could lead to harmful inflammation and the risk of brain damage or central nervous system disorders. Oberdörster’s study is scheduled to appear in the May 2004 journal Inhalation Toxicology, and is receiving widespread attention in the scientific community; it was cited at an international nanotechnology/health conference earlier this year in England by the Institute of Physics.


"I’m not advocating that we stop using nanotechnology, but I do believe we should continue to look for adverse health effects," says Oberdörster, who also leads the UR division of Respiratory Biology and Toxicology. "Sixty years ago scientists showed that in primates, nano-sized particles traveled along nerves from the nose and settled into the brain. But this has mostly been forgotten. The difference today is that more nano-particles exist, and the technology is moving forward to find additional uses for them – and yet we do not have answers to important questions of the possible health impact."

Backed by $600 million in recent federal funding and the support of President Bush, nanotechnology is a rising industry in the United States. Japan, Taiwan and other countries are also racing to produce nanomaterials, which can be applied to electronics, optics, medical devices and other industries.

The technology evolved when scientists found ways to manipulate carbon, zinc and gold molecules into microscopic clusters that could be useful in building almost anything ultra-small. Medical applications under development include using nanoparticles as drug-delivery systems, or as a super-advanced type of radiation therapy that could zap tumors with heat-seeking missile precision.

But some scientists are concerned the industry is moving too fast. The U.S. Department of Defense awarded to grant to Oberdörster and colleagues, to develop a model that would predict the toxicity of certain nanoparticles. Oberdörster is leading the five-year study, employing a multidisciplinary team from 10 departments at three universities (UR, University of Minnesota, University of Washington at St. Louis.)

They plan to test a hypothesis that the chemical characteristics of nanoparticles determine how they will ultimately interact with human or animal cells. A negative cellular response may indicate impaired function of the central nervous system, they propose. In previous studies, Oberdörster showed that nano-sized particles depositing in the nose of rats traveled into the olfactory bulb.

At this point the team is not entirely opposed to nanotechnology, Oberdörster explains. In fact, researchers hope to work with the industry, as well as with the American and Canadian governments, to seek solutions if problems arise. Another goal is to develop an educational program so that future engineers and scientists will understand the health consequences of nanotechnology.

For decades Oberdörster has studied how the body interacts with ambient ultrafine particles, including automotive and power plant emissions and dust from the World Trade Center disaster. What’s different about nanotechnology is that these particles are man-made into a well-defined size, down to a billionth of a meter, and appear to seep all the way into the mitochondria, or energy source, of living cells.

"We must consider many different issues before we come to a judgment on risk," he says. "Foremost is an assessment of potential human and environmental exposure by different routes: inhalation, ingestion, dermal. Then, what is their fate in the organism? And what are the risks of cumulative effects, given that these particles are being mass produced? At this point we’re trying to balance the tremendous opportunity that nanotechnology presents with any potential harm."

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>