Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT reports new insights in visual recognition

02.04.2004


Work could lead to improved machine vision systems, more



MIT scientists are reporting new insights into how the human brain recognizes objects, especially faces, in work that could lead to improved machine vision systems, diagnostics for certain neurological conditions and more.

Look at a photo of people running a marathon. The lead runners’ faces are quite distinct, but we can also make out the faces of those farther in the distance. Zoom in on that distant runner, however, "and you’ll see that there’s very little intrinsic face-related information, such as eyes and a nose. It’s just a diffuse blob. Yet somehow we can classify that blob as a face," said Pawan Sinha, an assistant professor in the Department of Brain and Cognitive Sciences (BCS). In contrast, performing this task reliably is beyond even the most advanced computer-recognition systems.


In the April 2 issue of Science, Sinha and colleagues show that a specific brain region known to be activated by clear images of faces is also strongly activated by very blurred images, just so long as surrounding contextual cues (such as a body) are present. "In other words, the neural circuitry in the human brain can use context to compensate for extreme levels of image degradations," Sinha said.

Past studies of human behavior and the work of many artists have suggested that context plays a role in recognition. "What is novel about this work is that it provides direct evidence of contextual cues eliciting object-specific neural responses in the brain," Sinha said.

The team used functional magnetic resonance imaging to map neuronal responses of the brain’s fusiform face area (FFA) to a variety of images. These included clear faces, blurred faces attached to bodies, blurred faces alone, bodies alone, and a blurred face placed in the wrong context (below the torso, for example).

Only the clear faces and blurred faces with proper contextual cues elicited strong FFA responses. "These data support the idea that facial representations underlying FFA activity are based not only on intrinsic facial cues, but rather incorporate contextual information as well," wrote BCS graduate student David Cox, BCS technical assistant Ethan Meyers, and Sinha.

"One of the reasons that reports of such contextual influences on object-specific neural responses have been lacking in the literature so far is that researchers have tended to ’simplify’ images by presenting objects in isolation. Using such images precludes consideration of contextual influences," Cox said. The findings not only add to scientists’ understanding of the brain and vision, but also "open up some very interesting issues from the perspective of developmental neuroscience," Sinha said. For example, how does the brain acquire the ability to use contextual cues? Are we born with this ability, or is it learned over time? Sinha is exploring these questions through Project Prakash, a scientific and humanitarian effort to look at how individuals who are born blind but later gain some vision perceive objects and faces. (See MIT Tech Talk, Aug. 25, 2003.)

Potential applications

Computer recognition systems work reasonably well when images are clear, but they break down catastrophically when images are degraded. "A human’s ability is so far beyond what the computer can do," Meyers emphasized. "The new work could aid the development of better systems by changing our concept of the kind of image information useful for determining what an object is."

There could also be clinical applications. For example, said Sinha, "contextually evoked neural activity, or the lack of it, could potentially be used as an early diagnostic marker for specific neurological conditions like autism, which are believed to be correlated with impairments in information integration. We hope to address such questions as part of the Brain Development and Disorders Project, a collaboration between MIT and Children’s Hospital" in Boston.


This work was supported by the Athinoula A. Martinos Center for Biomedical Imaging, the National Center for Research Resources and the Mental Illness and Neuroscience Discovery (MIND) Institute, as well as the National Defense Science and Engineering Graduate Fellowship, the Alfred P. Sloan Foundation and the John Merck Scholars Award.

Elizabeth Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>