Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What happens when ice melts?

02.04.2004


How molecules are linked together to form liquid water is the subject of a groundbreaking study due to appear Thursday, Apr. 1 in Science magazine’s advance publication web site Science Express. The investigation entitled The Structure of the First Coordination Shell in Liquid Water summarizes the results of an international collaboration headed by researchers at Stockholm University and the Stanford Linear Accelerator Center (SLAC) in California. The international team of researchers, which also involved the BESSY synchrotron lab in Berlin, Linköping University and the University of Utrecht, found that water molecules clump together much more loosely than previously thought. The authors propose that this indicates an unknown structure in the liquid, chains or rings or similar – a highly controversial statement which could signify a breakthrough in understanding liquid water.



Water was already in antiquity recognized as one of the fundamental elements in Nature. It is the most abundant substance on earth, and all known forms of life need it to exist. Yet what water really is – at least in its liquid form – is still, to a large extent, a mystery.

Water has a simple chemical formula, H2O, i.e. it consists of two hydrogens and one oxygen. In spite of the apparent simplicity, water is a complex liquid with many unusual properties and many years of intense research have still left much to learn. Even a fundamental question, such as whether or not the liquid has some structure has not been possible to answer directly until now. That is, do the molecules organize themselves in particular ways or is water completely disordered?


The molecules in the liquid and in ice bond together through socalled hydrogen bonds: the somewhat positive hydrogens in one molecule bind to the negatively charged oxygen in another. Each molecule can thus link to four others – with two links through the oxygen and one through each of its hydrogens. This arrangement with four neighbors is realized in ordinary ice. The hydrogen bond is relatively weak – it is about ten times weaker than the bonds within the molecule itself, which makes it flexible enough to be easily broken, but at the same time strong enough to guarantee that even in liquid water molecules spend most of their time bonded together by hydrogen bonds.

As we melt ice, it is easy to see that bonds are broken, there is disorder and the molecules start to move away from their optimum positions. In contrast to the static crystalline pattern in ice, hydrogen bonds in the liquid are thus formed and broken continuously on a picosecond (10-12 second) time scale. This provides flexibility but might also be one of the reasons why the fluctuating structures in the liquid are still far from being understood. So what exactly happens on a molecular level when the ice melts?

The common picture is that not “too much” happens: the consensus among researchers has been that each molecule in the liquid, at any given time, retains on the average close to four bonds. The authors point out that this estimate was based on theoretical assumptions that became commonly accepted during the past 20 years because, when applied in computer simulations, they gave results consistent with known properties of water, such as the unusually high amount of heat that is required to heat it up.

However, it is only now that this picture has been directly tested experimentally and the authors find that the established picture was wrong. The new results show that the number of bonds in the liquid is only about half of that in ice or little over 2. Each molecule could still form up to four bonds, the research suggests, but two would be of different, much looser kinds. This type of coordination would be found for chains or rings, but not in a completely disordered liquid. Furthermore, “everything happens” at the melting point; heating from room temperature to close to the boiling point had very little effect on the coordination in the liquid.

The research was the first application to the inner structure of water of a technique called X-ray absorption spectroscopy using intense x-ray sources at the Advanced Photon Source of the Argonne National Laboratory, at the Advanced Light Source of the Lawrence Berkeley National Laboratory as well as at MAX Lab, Sweden. This was combined with theoretical calculations of spectra as well as simulations of the liquid. Unfortunately, none of the tested present simulation techniques reproduce the new experimental data.

The new results reopen the hunt for the structure of liquid water. One possibility supported by the new data, the authors say, is that water molecules could arrange in chains or in rings. The new results provide an opportunity to refine the present theoretical simulation techniques to become even more reliable. Eventually, the outcome could be a better understanding of the many unusual properties of water and – last, but not least – of the ability of water to sustain the chemical reactions inside a living cell which are notoriously hard to imitate using different liquids.

Agneta Paulsson | alfa

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>