Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Use Zebrafish Model to Show Effects of Ionizing, UV Radiation Differ During Development

31.03.2004


The results and use of the model may have implications for cancer therapy



Zebrafish may prove to be an invaluable animal model with which to screen the effects of radiation, Jefferson Medical College researchers have found.

Adam Dicker, M.D., Ph.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University and Jefferson’s Kimmel Cancer Center in Philadelphia, Mary Frances McAleer, M.D., Ph.D., a resident in the Department of Radiation Oncology at Jefferson Medical College and their co-workers compared the effects on zebrafish embryos of two types of radiation – ionizing radiation, which is the kind given to patients for cancer treatment, and ultraviolet (UV) radiation, which comes naturally from the sun.


The researchers exposed the embryos at different time points in development to different doses of ionizing and UV radiation, comparing the sensitivity of the embryos.

“We found that the zebrafish were very sensitive to the mid-blastula transition, the point in development in which the embryo goes from relying on the maternal mRNA in the yolk sac to the embryo itself controlling development,” Dr. McAleer says.

Prior to this transition, the fish are extremely sensitive to ionizing radiation, she says. But when exposed to UV light, the younger embryos were unaffected. But later, after the transition period, the embryos show morphologic damage in their development when exposed to UV radiation.

Dr. McAleer presents the team’s findings March 30 at the annual meeting of the American Association for Cancer Research in Orlando.

“We saw something unique,” she says. “We hypothesize that this may be due to the gene expression of the embryos.” The researchers say that prior to the mid-blastula transition, cells are going through the cell growth cycle without regulation, rapidly dividing. At that point, the cell cycle becomes asynchronous, with certain cells dividing at the same time – which is when differentiation and “the crux of development” occurs.

They found that much of the damage from ionizing radiation is due to breaks in both strands of the cell’s double-stranded DNA. When the fish were exposed to UV light, the DNA formed “crosslinks” in which two thymine bases form on the same strand next to each other. The cell uses entirely different repair mechanisms to fix both types of damage.

The Jefferson team performed a microarray analysis to confirm their findings. They looked at normal embryos unexposed to radiation at different time points in their development, examining different groups of genes in normal embryos involved in various types of DNA repair, including base-excision repair, mismatch repair and double-strand break repair.

They found that prior to the mid-blastula transition, the enzymes required for mismatch and base repair are elevated. “Conversely, the double-strand break repair genes aren’t expressed until following that time point,” Dr. McAleer says. “This supported our observation that this is gene expression-based. The damage we saw early in the fish exposed to ionizing radiation is related to the absence of the double-strand break repair enzymes. There is a low level of repair genes in the later fish, which is when we see UV exposure sensitivity.”

In earlier work, Dr. Dicker used zebrafish to show that while radiation and some chemotherapeutic agents damage DNA, there were different time periods in development in which the zebrafish were sensitive to either radiation or the drugs.

“In general, drugs targeted for specific enzymes are used in combination with chemotherapy agents,” he says. “We can use the zebrafish system to help us understand the mechanisms of how chemotherapy drugs work before we start adding them on.”

According to Dr. McAleer, the zebrafish as a vertebrate model with which to study cancer has several advantages. The embryos are optically transparent, meaning researchers can watch organs develop. The fish are easy to manipulate and manage, and develop into adults in a short time. Most importantly, their DNA or genome is very similar to humans.

Next, the researchers plan to use zebrafish to help them test the effectiveness of various drugs in blunting the effects of radiation.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17620

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>