Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Use Zebrafish Model to Show Effects of Ionizing, UV Radiation Differ During Development

31.03.2004


The results and use of the model may have implications for cancer therapy



Zebrafish may prove to be an invaluable animal model with which to screen the effects of radiation, Jefferson Medical College researchers have found.

Adam Dicker, M.D., Ph.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University and Jefferson’s Kimmel Cancer Center in Philadelphia, Mary Frances McAleer, M.D., Ph.D., a resident in the Department of Radiation Oncology at Jefferson Medical College and their co-workers compared the effects on zebrafish embryos of two types of radiation – ionizing radiation, which is the kind given to patients for cancer treatment, and ultraviolet (UV) radiation, which comes naturally from the sun.


The researchers exposed the embryos at different time points in development to different doses of ionizing and UV radiation, comparing the sensitivity of the embryos.

“We found that the zebrafish were very sensitive to the mid-blastula transition, the point in development in which the embryo goes from relying on the maternal mRNA in the yolk sac to the embryo itself controlling development,” Dr. McAleer says.

Prior to this transition, the fish are extremely sensitive to ionizing radiation, she says. But when exposed to UV light, the younger embryos were unaffected. But later, after the transition period, the embryos show morphologic damage in their development when exposed to UV radiation.

Dr. McAleer presents the team’s findings March 30 at the annual meeting of the American Association for Cancer Research in Orlando.

“We saw something unique,” she says. “We hypothesize that this may be due to the gene expression of the embryos.” The researchers say that prior to the mid-blastula transition, cells are going through the cell growth cycle without regulation, rapidly dividing. At that point, the cell cycle becomes asynchronous, with certain cells dividing at the same time – which is when differentiation and “the crux of development” occurs.

They found that much of the damage from ionizing radiation is due to breaks in both strands of the cell’s double-stranded DNA. When the fish were exposed to UV light, the DNA formed “crosslinks” in which two thymine bases form on the same strand next to each other. The cell uses entirely different repair mechanisms to fix both types of damage.

The Jefferson team performed a microarray analysis to confirm their findings. They looked at normal embryos unexposed to radiation at different time points in their development, examining different groups of genes in normal embryos involved in various types of DNA repair, including base-excision repair, mismatch repair and double-strand break repair.

They found that prior to the mid-blastula transition, the enzymes required for mismatch and base repair are elevated. “Conversely, the double-strand break repair genes aren’t expressed until following that time point,” Dr. McAleer says. “This supported our observation that this is gene expression-based. The damage we saw early in the fish exposed to ionizing radiation is related to the absence of the double-strand break repair enzymes. There is a low level of repair genes in the later fish, which is when we see UV exposure sensitivity.”

In earlier work, Dr. Dicker used zebrafish to show that while radiation and some chemotherapeutic agents damage DNA, there were different time periods in development in which the zebrafish were sensitive to either radiation or the drugs.

“In general, drugs targeted for specific enzymes are used in combination with chemotherapy agents,” he says. “We can use the zebrafish system to help us understand the mechanisms of how chemotherapy drugs work before we start adding them on.”

According to Dr. McAleer, the zebrafish as a vertebrate model with which to study cancer has several advantages. The embryos are optically transparent, meaning researchers can watch organs develop. The fish are easy to manipulate and manage, and develop into adults in a short time. Most importantly, their DNA or genome is very similar to humans.

Next, the researchers plan to use zebrafish to help them test the effectiveness of various drugs in blunting the effects of radiation.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17620

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>