Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human brain and comparative judgments

25.03.2004


It is relatively common to hear an object described as being "bigger than a breadbox," and most people have little trouble making this type of comparative judgment. However, how the human brain makes such comparisons based on continuous quantities is quite complex and not completely understood. Now, a new research study published in the March 25 issue of Neuron provides significant new information about how the brain interprets spatial and nonspatial sensory information to make comparative judgments about quantities such as number, size, and luminance.




Previous work suggests that a region of the brain called the intraparietal sulcus (IPS) is active during comparative operations. Dr. Philippe Pinel and colleagues from the Unit of Cognitive Neuroimaging in Orsay, France designed a study to investigate how the brain processes the information that is used to make comparative judgments about numerical information and nonnumerical stimuli like size and luminance. Specifically, the researchers were interested in determining whether comparative judgments on each continuum involve the activity of specific defined regions of the IPS. Human subjects were scanned using a sophisticated brain imaging technique called functional magnetic resonance imaging (fMRI) while they made comparative judgments about pairs of Arabic digits that varied in actual physical size, numerical size, and luminance. This experimental paradigm allowed the researchers to examine interference evoked by the other two irrelevant dimensions as well as specific regions of brain activity.

The authors observed that, during comparative judgments, the relative continuous quantities of number, size, and luminance are represented in distributed and overlapping regions of the cortex, with no single region uniquely selective for one particular stimulus. According to Dr. Pinel, "Our results demonstrate that, during comparative judgments, continuous dimensions such as luminance and size are neither processed by distinct regions of highly specialized cortex nor by a single generic comparison system. Instead, processing appears to be distributed along the length of the IPS, with partially different local peaks for each dimension. There is considerable overlap between the local brain regions, and although there may be some neurons that respond to stimuli from a single dimension, those neurons are not likely to exist in a unique, well-delimited anatomical area."


Philippe Pinel, Manuela Piazza, Denis Le Bihan, and Stanislas Dehaene: "Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments"


Published in Neuron, Volume 41, Number 6, 25 March 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>