Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human brain and comparative judgments

25.03.2004


It is relatively common to hear an object described as being "bigger than a breadbox," and most people have little trouble making this type of comparative judgment. However, how the human brain makes such comparisons based on continuous quantities is quite complex and not completely understood. Now, a new research study published in the March 25 issue of Neuron provides significant new information about how the brain interprets spatial and nonspatial sensory information to make comparative judgments about quantities such as number, size, and luminance.




Previous work suggests that a region of the brain called the intraparietal sulcus (IPS) is active during comparative operations. Dr. Philippe Pinel and colleagues from the Unit of Cognitive Neuroimaging in Orsay, France designed a study to investigate how the brain processes the information that is used to make comparative judgments about numerical information and nonnumerical stimuli like size and luminance. Specifically, the researchers were interested in determining whether comparative judgments on each continuum involve the activity of specific defined regions of the IPS. Human subjects were scanned using a sophisticated brain imaging technique called functional magnetic resonance imaging (fMRI) while they made comparative judgments about pairs of Arabic digits that varied in actual physical size, numerical size, and luminance. This experimental paradigm allowed the researchers to examine interference evoked by the other two irrelevant dimensions as well as specific regions of brain activity.

The authors observed that, during comparative judgments, the relative continuous quantities of number, size, and luminance are represented in distributed and overlapping regions of the cortex, with no single region uniquely selective for one particular stimulus. According to Dr. Pinel, "Our results demonstrate that, during comparative judgments, continuous dimensions such as luminance and size are neither processed by distinct regions of highly specialized cortex nor by a single generic comparison system. Instead, processing appears to be distributed along the length of the IPS, with partially different local peaks for each dimension. There is considerable overlap between the local brain regions, and although there may be some neurons that respond to stimuli from a single dimension, those neurons are not likely to exist in a unique, well-delimited anatomical area."


Philippe Pinel, Manuela Piazza, Denis Le Bihan, and Stanislas Dehaene: "Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments"


Published in Neuron, Volume 41, Number 6, 25 March 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>