Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new Twist on bone development

16.03.2004


A new research study reveals that formation of the cells that build bone tissue, called osteoblasts, is suppressed by a complicated inhibitory signal and that formation of the skeleton proceeds only after relief of the inhibition. This inhibitory signal is part of normal development, and without it, bone formation proceeds prematurely and abnormally.



A gene called Runx2 is the earliest and most specific indicator of osteoblast formation. However, Runx2 expression precedes the actual appearance of osteoblasts by about 4 days. Dr. Gerard Karsenty from Baylor College of Medicine in Houston, Texas, and colleagues were interested in determining what other regulatory molecules may be involved in this process during the delay period. They focused on proteins called Twist-1 and Twist-2 that are present in decreased amounts in people with Saethre-Chotzen syndrome, a disease characterized by overproduction of bone tissue. The researchers discovered that Twist proteins are found in Runx2-containing cells very early in development and that osteoblast development occurs only after Twist amounts decrease. Further, without Twist proteins, osteoblasts form too early and too much Twist inhibits osteoblast formation but does not influence that amount of Runx2 expression.

The researchers conclude that Twist proteins transiently inhibit osteoblast differentiation during formation of the skeleton by negatively regulating Runx2. According to Dr. Karsenty, "These results reveal an unanticipated complexity in osteoblast differentiation whose initiation is determined by the relief of an inhibition." The researchers went on to identify a novel region of the Twist proteins, named the Twist box, and characterized this region as the specific site required for interaction between the two Twist proteins and Runx2. The authors point out that some Saethre-Chotzen patients have a mutation that results in a loss of the Twist box and that this mutation could easily explain the occurrence of the disease.



P. Bialek, B. Kern, X. Yang, M. Schrock, D. Sosic, N. Hong, H. Wu, K. Yu, D.M. Ornitz, E.N. Olson, M.J. Justice, and G. Karsenty: "A Twist Code Determines the Onset of Osteoblast Differentiation"

Published in Developmental Cell, Volume 6, Number 3, March 2004, pages 423-436.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>