Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new Twist on bone development

16.03.2004


A new research study reveals that formation of the cells that build bone tissue, called osteoblasts, is suppressed by a complicated inhibitory signal and that formation of the skeleton proceeds only after relief of the inhibition. This inhibitory signal is part of normal development, and without it, bone formation proceeds prematurely and abnormally.



A gene called Runx2 is the earliest and most specific indicator of osteoblast formation. However, Runx2 expression precedes the actual appearance of osteoblasts by about 4 days. Dr. Gerard Karsenty from Baylor College of Medicine in Houston, Texas, and colleagues were interested in determining what other regulatory molecules may be involved in this process during the delay period. They focused on proteins called Twist-1 and Twist-2 that are present in decreased amounts in people with Saethre-Chotzen syndrome, a disease characterized by overproduction of bone tissue. The researchers discovered that Twist proteins are found in Runx2-containing cells very early in development and that osteoblast development occurs only after Twist amounts decrease. Further, without Twist proteins, osteoblasts form too early and too much Twist inhibits osteoblast formation but does not influence that amount of Runx2 expression.

The researchers conclude that Twist proteins transiently inhibit osteoblast differentiation during formation of the skeleton by negatively regulating Runx2. According to Dr. Karsenty, "These results reveal an unanticipated complexity in osteoblast differentiation whose initiation is determined by the relief of an inhibition." The researchers went on to identify a novel region of the Twist proteins, named the Twist box, and characterized this region as the specific site required for interaction between the two Twist proteins and Runx2. The authors point out that some Saethre-Chotzen patients have a mutation that results in a loss of the Twist box and that this mutation could easily explain the occurrence of the disease.



P. Bialek, B. Kern, X. Yang, M. Schrock, D. Sosic, N. Hong, H. Wu, K. Yu, D.M. Ornitz, E.N. Olson, M.J. Justice, and G. Karsenty: "A Twist Code Determines the Onset of Osteoblast Differentiation"

Published in Developmental Cell, Volume 6, Number 3, March 2004, pages 423-436.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>