Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Household activities release a cloud of dust, increasing exposure to particulate pollution

10.03.2004


Ordinary household activities, from dusting to dancing, can increase your exposure to particulate pollution, according to a new study. Whether you are cutting the rug or just vacuuming it, you may be inhaling tiny dust particles that could be harmful to your health.



The report, which quantifies some common indoor activities, appears in the March 15 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

Particles can accumulate in the respiratory system and aggravate health problems like asthma. Homes are filled with these particles, which often come from outdoors, cooking, smoking, heating equipment and, according to the study, dust kicked up from human activities.


"I measured concentrations of airborne particles continuously while performing a variety of normal human activities that resuspend house dust in the home," says Andrea Ferro, Ph.D., a professor of engineering at Clarkson University in Potsdam, N.Y. She did the work as part of her dissertation research at Stanford University.

Ferro and her coworkers placed particle detectors in a house in Redwood City, Calif., and then they folded clothes, dusted, made beds, vacuumed and did other everyday activities — not to mention some less common ones, like dancing. They applied a mathematical model to estimate the strength of each source.

Dusting, of course, kicked up a significant amount of particles, but it wasn’t the biggest contributor. "The highest source was from two people just walking around and sitting on furniture," Ferro says. This released particles at a rate of almost two milligrams per minute - about half as much as smoking a cigarette.

Dancing on a rug emitted as many particles as dusting, which wasn’t too surprising, Ferro says, since dancing is a vigorous activity. "The source strengths depended on the number of persons performing the activity, the vigor of the activity, the type of activity and the type of flooring," she says. Dancing on a wooden floor was near the bottom of the list.

Not only did Ferro design the study, but she also performed the activities. What kind of dance did she do? "Probably best described as solo salsa," she says. "Luckily, I did not take any videotape."

Vacuuming was also a large source of particles. Vacuum brushes release deeply embedded particles from the carpet; the motor produces additional particles; and the bags are not 100 percent efficient in collecting particles, Ferro says. Only one type of vacuum was tested; different cleaners could produce different results, depending on the design.

"The result that was most surprising to me was that just walking around can resuspend almost as much dust as vacuuming," Ferro says.

The majority of the particles were larger than five micrometers in diameter, but smaller particles still played a significant role. "Smaller particles tend to deposit deeper in the lungs than the larger particles, potentially causing more harm," Ferro says. The U.S. Environmental Protection Agency classifies these as "fine particles," which have been associated with increased respiratory disease, decreased lung functioning and even premature death.

The results could help people make a variety of decisions about living in their homes. "One study estimates that about two-thirds of house dust is tracked in from outdoors," Ferro says. "Therefore, leaving shoes at the door can make a big difference in reducing the particle reservoir on the floor." She also recommends leaving windows open while cleaning to increase ventilation; limiting the use of toxic household products, like pesticides; and installing non-carpet flooring.

Ferro has since performed another study in a different home, with similar results. "My focus now is to determine the actual mechanisms for resuspension from human activity and perform the work in an indoor air chamber where I can control more of the variables," she says.

Michael Bernstein | EurekAlert!
Further information:
http://www.clarkson.edu/news/releases/rel.cgi?ferro_indoor_air_090-03.rel
http://www.acs.org/

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>