Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides new insights about brain organization

20.02.2004


New evidence in animals suggests that theories about how the brain processes sight, sound and touch may need updating. Researchers from Wake Forest University Baptist Medical Center and colleagues report their findings in the current issue of the Proceedings of the National Academy of Sciences.



Using electrodes smaller than a human hair, researchers from Wake Forest Baptist and the University of California at San Francisco recorded individual cell activity in the brains of 31 adult rats. Their goal was to test two conflicting ideas about brain organization.

"One theory is that individual senses have separate areas of the brain dedicated to them," said Mark Wallace, Ph.D., the study’s lead investigator. "In this view, information is processed initially on a sense-by-sense basis and doesn’t come together until much later. However, this view has recently been challenged by studies showing that processing in the visual area of the brain, for example, can be influenced by hearing and touch."


Wallace and colleagues created a map of the rat cerebral cortex, the part of the brain believed responsible for perception. The map was created to show how different areas respond to sight, sound and touch. They found that while large regions are overwhelming devoted to processing information from a single sense, in the borders between them, cells can share information from both senses.

"This represents a new view of how the brain is organized," said Wallace, an associate professor of neurobiology and anatomy at Wake Forest Baptist.

He said these multisensory cells might also help explain how individuals who suffer a loss of one sense early in their life often develop greater acuity in their remaining senses.

"Imaging studies in humans show that when sight is lost at a young age, a portion of the brain that had been dedicated to sight begins to process sound and touch. It is possible that this change begins in these multisensory border regions, where cells that are normally responsive to these different senses are already found."

Wallace said the finding is also important because it suggests that the process of integrating sensory information might happen faster in the cerebral cortex than was previously thought. Wallace said that the ultimate goal of this research is to understand how the integration of multiple senses results in our behaviors and perceptions.

"It should come as no surprise when I say that we live in a multisensory world, being constantly bombarded with information from many senses. What is a bit of a surprise is that although we now know a great deal about how the brain processes information from the individual senses to form our perceptions, we’re still in the early stages of understanding how this happens between the different senses. "

Wallace’s co-researchers were Barry Stein, Ph.D., professor and chairman of neurobiology and anatomy at Wake Forest Baptist, and Ramnarayan Ramachandran at the University of California.


The project was funded by the National Institutes of Health.

Media Contacts: Robert Conn (rconn@wfubmc.edu), Karen Richardson (krchrdsn@wfubmc.edu) or Shannon Koontz (skoontz@wfubmc.edu) 336-716-4587.

About Wake Forest University Baptist Medical Center: Wake Forest Baptist is an academic health system comprised of North Carolina Baptist Hospital and Wake Forest University School of Medicine. It is licensed to operate 1,282 acute care, psychiatric, rehabilitation and long-term care beds and is consistently ranked as one of "America’s Best Hospitals" by U.S. News & World Report.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>