Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides new insights about brain organization

20.02.2004


New evidence in animals suggests that theories about how the brain processes sight, sound and touch may need updating. Researchers from Wake Forest University Baptist Medical Center and colleagues report their findings in the current issue of the Proceedings of the National Academy of Sciences.



Using electrodes smaller than a human hair, researchers from Wake Forest Baptist and the University of California at San Francisco recorded individual cell activity in the brains of 31 adult rats. Their goal was to test two conflicting ideas about brain organization.

"One theory is that individual senses have separate areas of the brain dedicated to them," said Mark Wallace, Ph.D., the study’s lead investigator. "In this view, information is processed initially on a sense-by-sense basis and doesn’t come together until much later. However, this view has recently been challenged by studies showing that processing in the visual area of the brain, for example, can be influenced by hearing and touch."


Wallace and colleagues created a map of the rat cerebral cortex, the part of the brain believed responsible for perception. The map was created to show how different areas respond to sight, sound and touch. They found that while large regions are overwhelming devoted to processing information from a single sense, in the borders between them, cells can share information from both senses.

"This represents a new view of how the brain is organized," said Wallace, an associate professor of neurobiology and anatomy at Wake Forest Baptist.

He said these multisensory cells might also help explain how individuals who suffer a loss of one sense early in their life often develop greater acuity in their remaining senses.

"Imaging studies in humans show that when sight is lost at a young age, a portion of the brain that had been dedicated to sight begins to process sound and touch. It is possible that this change begins in these multisensory border regions, where cells that are normally responsive to these different senses are already found."

Wallace said the finding is also important because it suggests that the process of integrating sensory information might happen faster in the cerebral cortex than was previously thought. Wallace said that the ultimate goal of this research is to understand how the integration of multiple senses results in our behaviors and perceptions.

"It should come as no surprise when I say that we live in a multisensory world, being constantly bombarded with information from many senses. What is a bit of a surprise is that although we now know a great deal about how the brain processes information from the individual senses to form our perceptions, we’re still in the early stages of understanding how this happens between the different senses. "

Wallace’s co-researchers were Barry Stein, Ph.D., professor and chairman of neurobiology and anatomy at Wake Forest Baptist, and Ramnarayan Ramachandran at the University of California.


The project was funded by the National Institutes of Health.

Media Contacts: Robert Conn (rconn@wfubmc.edu), Karen Richardson (krchrdsn@wfubmc.edu) or Shannon Koontz (skoontz@wfubmc.edu) 336-716-4587.

About Wake Forest University Baptist Medical Center: Wake Forest Baptist is an academic health system comprised of North Carolina Baptist Hospital and Wake Forest University School of Medicine. It is licensed to operate 1,282 acute care, psychiatric, rehabilitation and long-term care beds and is consistently ranked as one of "America’s Best Hospitals" by U.S. News & World Report.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>