Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exposure to low-level magnetic fields causes DNA damage in rat brain cells, researchers find


Two brain cells from a rat exposed to a low-level electromagnetic field show significant amounts of damaged DNA, seen exiting from the cells. Findings by UW researchers suggest that such damage is cumulative.

Photo credit: University of Washington

Study suggests damage is cumulative

Prolonged exposure to low-level magnetic fields, similar to those emitted by such common household devices as blow dryers, electric blankets and razors, can damage brain cell DNA, according to researchers in the University of Washington’s Department of Bioengineering. The scientists further found that the damage from brief exposures appears to build up over time.

The new study is scheduled to be published in Environmental Health Perspectives, a journal of the National Institutes of Environmental Health Sciences, and is available now on the Internet.

In the study, the researchers discovered that rats exposed to a 60-hertz field for 24 hours showed significant DNA damage, and rats exposed for 48 hours showed even more breaks in brain cell DNA strands. Exposure also resulted in a marked increase in brain cell apoptosis, or "cell suicide," a process in which a cell self-destructs because it can’t repair itself.

A previous study showed similar damage, but it was conducted at 10 times the intensity and rats were exposed for just two hours. That indicates that the effects of exposure are cumulative, and duration can be as damaging as intensity, said Henry Lai, a UW research professor who conducted the study with fellow UW bioengineer Narendra Singh. "In real life, people get this kind of exposure in brief doses – three minutes of exposure to a blow dryer, five minutes of exposure to an electric razor," Lai said. "We found that this could add up over time and could eventually lead to some health effect." Since Lai first reported findings of magnetic field-induced DNA damage in 1995, several laboratories in Europe and India have reported similar effects.

Traditionally, scientists have held that low-level electromagnetic fields couldn’t be harmful because they weren’t potent enough to break chemical bonds in a living organism. Lai doesn’t disagree – he simply suspects a more subtle mechanism is at work. He believes that the fields, rather than causing harm directly, initiate a process within the cells that leads to the damage.

Lai and Singh hypothesize that exposure to magnetic fields affects the balance of iron in certain cells, leading to an increase in free iron within the cell. That free iron undergoes a chemical reaction, which releases "free radicals," or charged atoms that attack cell structures, including DNA, lipids and proteins.

To test the idea, the researchers gave some of the rats drugs that either neutralize free radicals or decrease free iron before exposing the animals to the magnetic field. The treatments supported the hypothesis, effectively blocking the effects of the fields and protecting the rats’ brain cell DNA from damage.

One significant implication of this is that certain types of cells with higher iron content – such as brain cells – may be more susceptible to damage from electromagnetic fields.

DNA damage in and of itself isn’t unusual – all cells experience some DNA damage through normal wear and tear and repair themselves. Problems can occur when that damage is significantly increased because that also increases the likelihood of a mistake being made in the repair process, resulting in a mutation that could lead to such diseases as cancer.

Some types of DNA damage are more worrisome than others. A break on one side of DNA’s ladder-like double helix is relatively easy to fix. Repairs are much harder if both sides of the helix are broken, and, as a result, the probability of a mutation is substantially higher. Lai and Singh found both single and double strand breaks in the exposed brain cells.

Lai said people shouldn’t be overly alarmed by his research results. But they do need to be aware of the possibility that low-level electromagnetic fields might be harmful, especially given the fact that electrical devices are such a central component of daily life. And most household appliances – blow dryers, razors, electric blankets, ovens, coffee makers, clocks – emit a 60-hertz field. More work needs to be done to fully understand the process at work and the risks involved, Lai added. In the meantime, he has some advice:

"People should do what they can to limit their exposure to as little as possible, especially in relation to electrical appliances that are used very close to the body."

For more information, contact Lai at 206-543-1071 or

The study is available on the Web at

Rob Harrill | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>