Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to low-level magnetic fields causes DNA damage in rat brain cells, researchers find

19.02.2004


Two brain cells from a rat exposed to a low-level electromagnetic field show significant amounts of damaged DNA, seen exiting from the cells. Findings by UW researchers suggest that such damage is cumulative.

Photo credit: University of Washington


Study suggests damage is cumulative

Prolonged exposure to low-level magnetic fields, similar to those emitted by such common household devices as blow dryers, electric blankets and razors, can damage brain cell DNA, according to researchers in the University of Washington’s Department of Bioengineering. The scientists further found that the damage from brief exposures appears to build up over time.

The new study is scheduled to be published in Environmental Health Perspectives, a journal of the National Institutes of Environmental Health Sciences, and is available now on the Internet.



In the study, the researchers discovered that rats exposed to a 60-hertz field for 24 hours showed significant DNA damage, and rats exposed for 48 hours showed even more breaks in brain cell DNA strands. Exposure also resulted in a marked increase in brain cell apoptosis, or "cell suicide," a process in which a cell self-destructs because it can’t repair itself.

A previous study showed similar damage, but it was conducted at 10 times the intensity and rats were exposed for just two hours. That indicates that the effects of exposure are cumulative, and duration can be as damaging as intensity, said Henry Lai, a UW research professor who conducted the study with fellow UW bioengineer Narendra Singh. "In real life, people get this kind of exposure in brief doses – three minutes of exposure to a blow dryer, five minutes of exposure to an electric razor," Lai said. "We found that this could add up over time and could eventually lead to some health effect." Since Lai first reported findings of magnetic field-induced DNA damage in 1995, several laboratories in Europe and India have reported similar effects.

Traditionally, scientists have held that low-level electromagnetic fields couldn’t be harmful because they weren’t potent enough to break chemical bonds in a living organism. Lai doesn’t disagree – he simply suspects a more subtle mechanism is at work. He believes that the fields, rather than causing harm directly, initiate a process within the cells that leads to the damage.

Lai and Singh hypothesize that exposure to magnetic fields affects the balance of iron in certain cells, leading to an increase in free iron within the cell. That free iron undergoes a chemical reaction, which releases "free radicals," or charged atoms that attack cell structures, including DNA, lipids and proteins.

To test the idea, the researchers gave some of the rats drugs that either neutralize free radicals or decrease free iron before exposing the animals to the magnetic field. The treatments supported the hypothesis, effectively blocking the effects of the fields and protecting the rats’ brain cell DNA from damage.

One significant implication of this is that certain types of cells with higher iron content – such as brain cells – may be more susceptible to damage from electromagnetic fields.

DNA damage in and of itself isn’t unusual – all cells experience some DNA damage through normal wear and tear and repair themselves. Problems can occur when that damage is significantly increased because that also increases the likelihood of a mistake being made in the repair process, resulting in a mutation that could lead to such diseases as cancer.

Some types of DNA damage are more worrisome than others. A break on one side of DNA’s ladder-like double helix is relatively easy to fix. Repairs are much harder if both sides of the helix are broken, and, as a result, the probability of a mutation is substantially higher. Lai and Singh found both single and double strand breaks in the exposed brain cells.

Lai said people shouldn’t be overly alarmed by his research results. But they do need to be aware of the possibility that low-level electromagnetic fields might be harmful, especially given the fact that electrical devices are such a central component of daily life. And most household appliances – blow dryers, razors, electric blankets, ovens, coffee makers, clocks – emit a 60-hertz field. More work needs to be done to fully understand the process at work and the risks involved, Lai added. In the meantime, he has some advice:

"People should do what they can to limit their exposure to as little as possible, especially in relation to electrical appliances that are used very close to the body."


For more information, contact Lai at 206-543-1071 or hlai@u.washington.edu.

The study is available on the Web at http://ehp.niehs.nih.gov/docs/2004/6355/abstract.html

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/newsroom/news/2004archive/02-04archive/k021804.html
http://ehp.niehs.nih.gov/docs/2004/6355/abstract.html

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>