Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to low-level magnetic fields causes DNA damage in rat brain cells, researchers find

19.02.2004


Two brain cells from a rat exposed to a low-level electromagnetic field show significant amounts of damaged DNA, seen exiting from the cells. Findings by UW researchers suggest that such damage is cumulative.

Photo credit: University of Washington


Study suggests damage is cumulative

Prolonged exposure to low-level magnetic fields, similar to those emitted by such common household devices as blow dryers, electric blankets and razors, can damage brain cell DNA, according to researchers in the University of Washington’s Department of Bioengineering. The scientists further found that the damage from brief exposures appears to build up over time.

The new study is scheduled to be published in Environmental Health Perspectives, a journal of the National Institutes of Environmental Health Sciences, and is available now on the Internet.



In the study, the researchers discovered that rats exposed to a 60-hertz field for 24 hours showed significant DNA damage, and rats exposed for 48 hours showed even more breaks in brain cell DNA strands. Exposure also resulted in a marked increase in brain cell apoptosis, or "cell suicide," a process in which a cell self-destructs because it can’t repair itself.

A previous study showed similar damage, but it was conducted at 10 times the intensity and rats were exposed for just two hours. That indicates that the effects of exposure are cumulative, and duration can be as damaging as intensity, said Henry Lai, a UW research professor who conducted the study with fellow UW bioengineer Narendra Singh. "In real life, people get this kind of exposure in brief doses – three minutes of exposure to a blow dryer, five minutes of exposure to an electric razor," Lai said. "We found that this could add up over time and could eventually lead to some health effect." Since Lai first reported findings of magnetic field-induced DNA damage in 1995, several laboratories in Europe and India have reported similar effects.

Traditionally, scientists have held that low-level electromagnetic fields couldn’t be harmful because they weren’t potent enough to break chemical bonds in a living organism. Lai doesn’t disagree – he simply suspects a more subtle mechanism is at work. He believes that the fields, rather than causing harm directly, initiate a process within the cells that leads to the damage.

Lai and Singh hypothesize that exposure to magnetic fields affects the balance of iron in certain cells, leading to an increase in free iron within the cell. That free iron undergoes a chemical reaction, which releases "free radicals," or charged atoms that attack cell structures, including DNA, lipids and proteins.

To test the idea, the researchers gave some of the rats drugs that either neutralize free radicals or decrease free iron before exposing the animals to the magnetic field. The treatments supported the hypothesis, effectively blocking the effects of the fields and protecting the rats’ brain cell DNA from damage.

One significant implication of this is that certain types of cells with higher iron content – such as brain cells – may be more susceptible to damage from electromagnetic fields.

DNA damage in and of itself isn’t unusual – all cells experience some DNA damage through normal wear and tear and repair themselves. Problems can occur when that damage is significantly increased because that also increases the likelihood of a mistake being made in the repair process, resulting in a mutation that could lead to such diseases as cancer.

Some types of DNA damage are more worrisome than others. A break on one side of DNA’s ladder-like double helix is relatively easy to fix. Repairs are much harder if both sides of the helix are broken, and, as a result, the probability of a mutation is substantially higher. Lai and Singh found both single and double strand breaks in the exposed brain cells.

Lai said people shouldn’t be overly alarmed by his research results. But they do need to be aware of the possibility that low-level electromagnetic fields might be harmful, especially given the fact that electrical devices are such a central component of daily life. And most household appliances – blow dryers, razors, electric blankets, ovens, coffee makers, clocks – emit a 60-hertz field. More work needs to be done to fully understand the process at work and the risks involved, Lai added. In the meantime, he has some advice:

"People should do what they can to limit their exposure to as little as possible, especially in relation to electrical appliances that are used very close to the body."


For more information, contact Lai at 206-543-1071 or hlai@u.washington.edu.

The study is available on the Web at http://ehp.niehs.nih.gov/docs/2004/6355/abstract.html

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/newsroom/news/2004archive/02-04archive/k021804.html
http://ehp.niehs.nih.gov/docs/2004/6355/abstract.html

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>