Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-fighters in our mouths provide clues to enhancing the immune system

17.02.2004


Studies of natural antibiotics in our mouths may lead to new treatments for oral infections, as well as ways to boost the infection-fighting powers of mouthwashes, denture coatings, and wound dressings, according to a presentation at the annual meeting of the American Association for the Advancement of Science (AAAS). These compounds, called beta-defensins, are key components of our innate immune system.



"Innate immunity describes the defenses that we’re are born with; they’re coded in our genes. In contrast, we develop the antibodies of our acquired immune system over time as we’re exposed to bacteria and viruses," said Dr. Beverly Dale, professor in the University of Washington Department of Oral Biology, School of Dentistry, and scientific director of the UW Comprehensive Center for Oral Health Research. "It’s when our innate defenses fail that the acquired immune system picks up the slack."

The innate immune system has some remarkable characteristics, including the ability to distinguish between harmless and harmful bacteria. For example, disease-causing and harmless, or commensal, bacteria trigger the activation of beta-defensins through different chemical signaling pathways. The role of commensal bacteria may be to alert the immune system to the possible presence of invading bacteria, according to Dale.


The mouth is "a perfect place to study the innate immune system because it’s such an incredibly complex and challenging ecological system," Dale said. "Our mouth is full of moist surfaces, perfect for bacteria to adhere to; we feed these bacteria at regular intervals with nutritious foods and snacks." As a result, and despite efforts to brush them away, we have millions of bacteria in our mouths, according to Dale. "Yet most of us remain healthy--without infections--most of the time."

Dale and colleagues from the Comprehensive Center for Oral Health Research, Dr. Richard Darveau of the departments of Periodontics and Oral Biology, and Dr. Edward Clark of the Department of Microbiology, School of Medicine, will join Dr. David Relman of Stanford University’s departments of Microbiology & Immunology, and Medicine for a 12:30 p.m. session Monday, Feb. 16, on "Innate Immunity and Oral Health" at the AAAS’s annual meeting in Seattle.

Knowledge of the ways harmful and harmless bacteria interact with our immune systems has been limited by the fact that many kinds of bacteria won’t grow in a laboratory. Relman has developed high-throughput methods to better analyze oral microbial communities and will discuss his results in the session "Microbial Diversity and Oral Health."

The microorganisms in our mouths are most obvious when they collect on our teeth as plaque, a tough sticky mixture that can contain over 300 species of bacteria. Most of these bacteria are harmless commensals, but a minority, such as the bacteria Porphyromonas gingivalis, can cause periodontal or gum disease. Darveau’s session will include an overview of innate immunity and how is it affected by the presence of disease-causing bacteria, such as P. gingivalis.

Special receptors on sentinel cells may help them detect invading pathogens. Clark’s session will discuss how these sentinels activate both the innate and acquired immune systems.

In her session on beta-defensins, Dale will discuss the ways that these natural antibiotics are activated and could be used to treat or prevent infection. Some institutions are already testing the use of simple antimicrobial peptides similar to beta-defensins to prevent oral mucositis, an infection that is a side effect of some chemotherapy treatments. Other possible uses for beta-defensins, or natural compounds that stimulate their production, may include mouthwashes, denture coatings, wound dressings, and coatings for catheters and other medical equipment.

"The innate immune system is a very subtle system that keeps us healthy most of the time," Dale said. A better understanding how the system works can help us understand how to enhance it, she said: "If our cells can tell the difference between different types of bacteria, what else are they doing that may protect our bodies from infection?"


The work of Dale, Darveau, and Clark was funded by the National Institute of Dental and Craniofacial Research (NIDCR).

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>