Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study suggests brains of autistic children can be trained to recognize faces

13.02.2004


Individuals with autism have been shown to have a difficult time recognizing faces, but two University of Washington researchers now suggest that the problem may be due to a lack of practice, rather than to abnormal functioning of the affected region of the brain.



Previous research, using an electroencephalogram (EEG) to measure brain activity, had shown that autistic 3- and 4-year-olds failed to show normal brain response when viewing their mother’s picture. However, a recent study released at the AAAS (Triple-A-S) Annual Meeting indicates that with time, a mother’s image does activate the part of the temporal lobe implicated in face recognition, even when an unfamiliar face does not. AAAS is the American Association for the Advancement of Science.

"These results suggest that lack of normal activation of the fusiform gyrus in persons with autism may be due to their lack of familiarity and experience with faces rather than an inherent problem with the fusiform," said Geraldine Dawson, who directs the University of Washington Autism Center and who was among the first researchers to suggest that an impairment in face recognition might be one of the earliest signs of autism.


The researchers are seeking to understand the nature of brain dysfunction in autism, focusing specifically on brain regions involved in face processing. The MRIs allow them to examine patterns of brain activity while the subjects process information from faces. The project also examines whether interventions can be used to effectively train dysfunctional brain regions to better process information from the face.

The current study compared activation of the fusiform gyrus (the face area) and inferior temporal gyrus (a part of the brain that recognizes objects not faces) in 11 high-functioning adolescents and adults with autism and 10 matched controls, recording the way the brains of each individual responded when viewing faces and when viewing cars.

"As previously demonstrated, the brain area activated by unfamiliar faces in the individuals with autism was the same as the area that is normally used during visual processing of objects," said Elizabeth Aylward, UW professor of radiology and co-director of the UW Autism Research Team. "However, the fusiform was activated in response to the mother’s face."

In earlier work, Dawson had established that children with autism had problems with face recognition, when compared with normally developing children and children with developmental delay. She and Aylward note that the ability to recognize faces may be similar to the ability to comprehend language.

"In the beginning babies can distinguish between all types of language sounds," said Aylward. "But language processing later becomes fine tuned to the sounds of the child’s own language. Similarly, in normal children, the area of the brain involved in face processing may require fine tuning in order for it to respond specifically to human faces."

Aylward and Dawson wondered whether this particular area of the brain was developmentally "broken," or did it fail to activate in response to faces because it has not had sufficient experience? And would more exposure (or more directed exposure) to faces lead to normal patterns of brain activation? If the latter were the case, the researchers hypothesized that a face with which the child has had the most experience, usually that of a parent, would be the face most likely to result in normal activation of the fusiform.

Dawson is working with another University of Washington researcher, Gerard D. Schellenberg, Research Professor of Medicine and Neurology Adjunct Research Professor of Pharmacology, on an ongoing study of families with siblings diagnosed with autism. With 300 families signed up, the UW multiplex family study, which Schellenberg will describe at the AAAS meeting, is one the largest worldwide efforts aimed at identifying the location of autism genes. The researchers believe that there are at least five genes that come together to make a person vulnerable to the disorder.

"There is strong evidence that inheritance is a major player in autism," said Schellenberg. "We are using autism as a trait and trying to do a genetic map that will help us to understand whether the deletions we see in autism are affecting genes and causing autism, or whether the genome in autism is unstable, and the deletions are a symptom of that instability."


###
The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science (www.sciencemag.org). AAAS was founded in 1848, and serves some 265 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of one million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Additional news from the AAAS Annual Meeting may be found online at www.eurekalert.org.

MEDIA NOTE: A news briefing on this research will take place at 4:00 p.m. Pacific Time, Thursday, 12 February, during the AAAS Annual Meeting in Seattle, in the Eliza Anderson Amphitheater, Grand Hyatt Hotel. Further, these and other speakers will take part in a symposium titled, "Autism: Behavioral, Brain and Genetic Perspectives" at 9:00 a.m. Saturday, 14 February, on the second floor of the Sheraton Hotel, Grand Ballroom C. Press registration is located in the AAAS Press Center in Leonesa I of the Grand Hyatt Hotel.

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org
http://www.eurekalert.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>