Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study suggests brains of autistic children can be trained to recognize faces

13.02.2004


Individuals with autism have been shown to have a difficult time recognizing faces, but two University of Washington researchers now suggest that the problem may be due to a lack of practice, rather than to abnormal functioning of the affected region of the brain.



Previous research, using an electroencephalogram (EEG) to measure brain activity, had shown that autistic 3- and 4-year-olds failed to show normal brain response when viewing their mother’s picture. However, a recent study released at the AAAS (Triple-A-S) Annual Meeting indicates that with time, a mother’s image does activate the part of the temporal lobe implicated in face recognition, even when an unfamiliar face does not. AAAS is the American Association for the Advancement of Science.

"These results suggest that lack of normal activation of the fusiform gyrus in persons with autism may be due to their lack of familiarity and experience with faces rather than an inherent problem with the fusiform," said Geraldine Dawson, who directs the University of Washington Autism Center and who was among the first researchers to suggest that an impairment in face recognition might be one of the earliest signs of autism.


The researchers are seeking to understand the nature of brain dysfunction in autism, focusing specifically on brain regions involved in face processing. The MRIs allow them to examine patterns of brain activity while the subjects process information from faces. The project also examines whether interventions can be used to effectively train dysfunctional brain regions to better process information from the face.

The current study compared activation of the fusiform gyrus (the face area) and inferior temporal gyrus (a part of the brain that recognizes objects not faces) in 11 high-functioning adolescents and adults with autism and 10 matched controls, recording the way the brains of each individual responded when viewing faces and when viewing cars.

"As previously demonstrated, the brain area activated by unfamiliar faces in the individuals with autism was the same as the area that is normally used during visual processing of objects," said Elizabeth Aylward, UW professor of radiology and co-director of the UW Autism Research Team. "However, the fusiform was activated in response to the mother’s face."

In earlier work, Dawson had established that children with autism had problems with face recognition, when compared with normally developing children and children with developmental delay. She and Aylward note that the ability to recognize faces may be similar to the ability to comprehend language.

"In the beginning babies can distinguish between all types of language sounds," said Aylward. "But language processing later becomes fine tuned to the sounds of the child’s own language. Similarly, in normal children, the area of the brain involved in face processing may require fine tuning in order for it to respond specifically to human faces."

Aylward and Dawson wondered whether this particular area of the brain was developmentally "broken," or did it fail to activate in response to faces because it has not had sufficient experience? And would more exposure (or more directed exposure) to faces lead to normal patterns of brain activation? If the latter were the case, the researchers hypothesized that a face with which the child has had the most experience, usually that of a parent, would be the face most likely to result in normal activation of the fusiform.

Dawson is working with another University of Washington researcher, Gerard D. Schellenberg, Research Professor of Medicine and Neurology Adjunct Research Professor of Pharmacology, on an ongoing study of families with siblings diagnosed with autism. With 300 families signed up, the UW multiplex family study, which Schellenberg will describe at the AAAS meeting, is one the largest worldwide efforts aimed at identifying the location of autism genes. The researchers believe that there are at least five genes that come together to make a person vulnerable to the disorder.

"There is strong evidence that inheritance is a major player in autism," said Schellenberg. "We are using autism as a trait and trying to do a genetic map that will help us to understand whether the deletions we see in autism are affecting genes and causing autism, or whether the genome in autism is unstable, and the deletions are a symptom of that instability."


###
The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science (www.sciencemag.org). AAAS was founded in 1848, and serves some 265 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of one million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Additional news from the AAAS Annual Meeting may be found online at www.eurekalert.org.

MEDIA NOTE: A news briefing on this research will take place at 4:00 p.m. Pacific Time, Thursday, 12 February, during the AAAS Annual Meeting in Seattle, in the Eliza Anderson Amphitheater, Grand Hyatt Hotel. Further, these and other speakers will take part in a symposium titled, "Autism: Behavioral, Brain and Genetic Perspectives" at 9:00 a.m. Saturday, 14 February, on the second floor of the Sheraton Hotel, Grand Ballroom C. Press registration is located in the AAAS Press Center in Leonesa I of the Grand Hyatt Hotel.

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org
http://www.eurekalert.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>