Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer vaccine study

09.02.2004


Study evaluates immune response to telomerase tumor antigen as possible vaccine



Researchers at the Abramson Cancer Center of the University of Pennsylvania have begun a Phase I clinical trial to evaluate the effectiveness of a telomerase peptide as a possible vaccine against breast cancer. The study will measure potential tumor cell shrinkage in patients after an immune response has been triggered to an antigen – the telomerase peptide – found in more than 90 percent of breast cancer tumors.

The study is made possible through a unique $500,000 grant from the "Avon-NCI Progress for Patients" Awards program, a special private-public partnership between the Avon Foundation, Inc. and the National Cancer Institute (NCI) dedicated to accelerating early phase clinical research into promising therapies.


"This is the first clinical study to use a telomerase peptide as a possible vaccine against breast cancer," said lead researcher Robert Vonderheide, MD, DPhil, an assistant professor at the Leonard and Madlyn Abramson Family Cancer Research Institute at the University of Pennsylvania. "Our hope is that the immune response will kill the cancer and improve the health of patients."

Twenty-eight patients with metastatic breast cancer will be enrolled in the study, which is expected to last two years. Patients will be injected with one of three escalating doses of the telomerase antigen in combination with adjuvant therapies (granulocyte-macrophage colony stimulating factor, GM-CSF) over a period of seven months. The immune and tumor response to the telomerase-based vaccine will be monitored over the duration of the study and compared to a control response to an injection of cytomegalovirus peptide.

Avon/NCI-Funded Breast Cancer Vaccine Trial…

The results of an earlier feasibility study – also led by Vonderheide and published in the February 1st edition of the journal Clinical Cancer Research – showed immune responses with little toxicity in seven breast and prostate cancer patients after they were injected with small amounts of a similar telomerase peptide vaccine.

"One breast cancer patient in the earlier study showed temporary tumor regression, prompting us to accelerate research into the possibility of a vaccine," said trial principal investigator Susan Domchek, MD, a breast medical oncologist at the Abramson Cancer Center and assistant professor at Penn’s School of Medicine.

Patients can obtain further information about the trial by calling: 215-615-3360, or toll free at 1-800-789-Penn (7366).


About the Abramson Cancer Center:

The Abramson Cancer Center of the University of Pennsylvania was established in 1973 as a center of excellence in cancer research, patient care, education and outreach. Today, the Abramson Cancer Center ranks as one of the nation’s best in cancer care, according to US News and World Report, and is one of the top five in National Cancer Institute (NCI) funding. It is one of only 39 NCI-designated comprehensive cancer centers in the United States. Home to one of the largest clinical and research programs in the world, the Abramson Cancer Center of the University of Pennsylvania has 275 active cancer researchers and 250 Penn physicians involved in cancer prevention, diagnosis and treatment.

David March | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news
http://www.pennhealth.com/cancer

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>