Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little stress may go a long way toward boosting skin’s immunity

09.02.2004


A series of studies in rats and mice suggests that short bouts of stress increase the skin’s ability to fight infections and heal minor wounds.



The immune response of animals exposed to acute stress – about two hours of restraint – was two to four times higher compared to non-stressed animals. This was true when the animals’ skin was treated with chemical or protein antigens immediately after a stressful event. An antigen is any substance that the immune system reacts to by producing cells and antibodies.

Stress plus exposure to the antigen triggered an immune response that remained strong for weeks to several months later, when the animals were re-exposed to the irritant without further restraint.


"Acutely stressed animals had a much more vigorous immune response when they were first exposed to the antigen," said Firdaus Dhabhar, an associate professor of oral biology and molecular virology, immunology and medical genetics at Ohio State University.

"That boost to immunity seemed to last, as these animals’ immune systems also showed a powerful response when re-exposed to the antigen much later."

Control animals showed a normal immune response to the antigen upon re-exposure, but nowhere near that of the animals that had been stressed.

Dhabhar will give an overview of a decade’s worth of research on the effects of acute stress on skin immunity on February 10 at the annual American Academy of Dermatology meeting in Washington, D.C.

In several laboratory studies, researchers compared the immune responses of rats and mice that were restrained for two hours immediately before exposure to the antigen to control animals that were not restrained.

"Gentle restraint, or confinement, creates psychological stress," Dhabhar said. "As a result, heart rate increases, as do blood pressure and circulating levels of stress hormones. All are characteristic signs of a normal stress response, and all subside within a few hours after the stressful situation ends."

The researchers assessed the magnitude of immune responses by measuring the degree of inflammation at the initial site of antigen administration. They examined the types of cells and proteins – indicators of immune system activity – that were present, and in what amounts.

Animals were exposed to the same antigen, this time at a different place on the body, a few weeks to several months later. The researchers again measured immune responses.

"The stressed animals had a much more powerful immune response to the antigen, compared to the non-stressed animals," Dhabhar said. "And the stressed animals’ immune systems continued to stay strong, too, as shown by the later tests."

Short-term stress had boosted the animals’ immune responses two to four times over the response of the non-stressed mice, an effect the researchers saw when the animals were first exposed to the antigen. The researchers saw the same results when animals were again exposed to the antigen a few weeks to several months later.

"The more robust initial immune reaction might have formed a more efficient, or larger, pool of memory cells that ultimately gave the stressed animals’ immune systems a continued immune advantage months later," Dhabhar said.

Memory cells "remember" a specific antigen – a substance that the immune system reacts to by forming cells and antibodies. Years and even decades later memory cells can launch an intense attack against the same antigen.

Dhabhar likens the body’s immune response to waging a war: Soldiers, in the form of immune cells and proteins, travel from the barracks (the spleen) through blood-vessel boulevards to potential battle stations in the skin. This process speeds up during brief bouts of stress.

"During both the initial and secondary exposures, the stressed animals’ immune responses occurred at a faster rate and were significantly elevated for several days compared to control animals," Dhabhar said, adding that while this effect may be beneficial for healing a wound and fighting infections, it could also spell trouble for people with skin allergies or inflammatory disorders such as eczema, dermatitis, psoriasis and arthritis.

"In many of these diseases, the immune system attacks the body and causes inflammation and other serious problems," Dhabhar said. "Anything that boosts the immune response can cause more damage. But learning how the immune system mobilizes these inflammation-causing cells could possibly help scientists develop therapeutic targets for such diseases."

Learning how the body mobilizes an immune response during stress could also give researchers insight into creating more effective vaccines.

"The whole point of vaccination is to generate more memory cells," Dhabhar said. "The way the stressed animals’ immune systems responded to the antigen the second time around suggests that acute stress may help generate more of these memory cells.

"Most people believe that stress weakens the immune system and increases susceptibility to infection, yet the benefits of acute stress make sense from an evolutionary standpoint," he said. "Short-term stress activates protective biological mechanisms that are essential for survival."

Support for this work came from the National Institutes of Health and The Dana Foundation Clinical Hypotheses Program in Mind Body Medicine.


Contact: Firdaus Dhabhar, (614) 688-8562; Dhabhar.1@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/skinimm.htm

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>