Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the sleeping brain ’wake up’ – if only just a little – with every snore?

04.02.2004


UMHS, Altarum study finds sleep apnea disrupts sleep throughout night

Patients who snore or have other symptoms of sleep apnea often undergo testing in a sleep laboratory to measure the number of breathing pauses and arousals that occur while they slumber. But doctors find these tests do not effectively predict daytime consequences suspected to arise from sleep apnea, such as sleepiness in adults or hyperactivity in children.

Now, neurologists at the University of Michigan Health System and engineers at Altarum Institute in Ann Arbor, Mich., have discovered evidence that the disruption of sleep in sleep apnea may be much more frequent than the breathing pauses, or apneas, themselves.



In two research papers published in the February issue of the journal Sleep, the researchers describe for the first time evidence that on average, brain waves change with each breath, not just the short periods of the night when apneas occur. Although the data are preliminary, they suggest a whole new thinking in sleep research that eventually might help doctors predict who will suffer consequences of sleep apnea, and who will respond to treatment.

"Complicated studies that require time, money, and technical expertise are often performed in sleep laboratories," says Ronald Chervin, M.D., director of the Sleep Disorders Center and Michael S. Aldrich Sleep Disorders Laboratory at UMHS. "The most common reason is to gauge the severity of sleep apnea. A frustrating problem has been that results of these studies have not predicted the behavioral outcomes of sleep apnea very well. That makes us think that maybe we don’t have the best laboratory measures; maybe we are not recording some of the most important features of sleep apnea."

Millions of people experience sleep apnea, a condition in which repeated pauses in breathing during sleep cause many arousals during the night. The nocturnal arousals, in turn, are suspected to be an important cause of daytime symptoms: sleepiness in adults, and attention problems or hyperactivity in children.

Typical measures for assessing sleep apnea involve counting the number of times a patient’s breathing is obstructed or partly obstructed. But sleep specialists also know that people with sleep apnea often work harder than normal to breathe even in between these episodes.

"Our idea was that maybe every snore or every difficult breath is actually arousing the brain to some small extent," Chervin explains. "The problem is that much of what happens in brain waves cannot be seen by the human eye, even though highly trained sleep technicians and physicians carefully review the sleep study."

And this is where Altarum Institute engineers were able to help. Working with Chervin, they applied their long experience in signal pattern detection to develop a novel computer program. The computer measures the extent to which brain wave activity varies, on average, with the breathing cycle during sleep.

To test the new algorithm, the researchers used sleep studies that had been recorded from children scheduled to have tonsillectomy surgery to correct sleep apnea. The first paper details results from one child, and shows for the first time that on average brain wave activity as reflected in the electroencephalogram (EEG) did change with the child’s breathing cycle, even when no pauses in breathing occurred. This brain wave link to the breathing cycle was less prominent when the child was retested one year after his tonsils were removed.

For the second paper, the researchers looked at results from 10 children, most suspected to have sleep apnea, to determine whether the new link between brain activity and breathing predicted daytime sleepiness or decreased attention.

"We looked at the relationship between one EEG signal and the breathing cycle, and in most of the children we found significant correlation between the amount of energy in the EEG signal and different phases in the breathing cycle," says Joseph Burns, Ph.D., a senior scientist who led the effort at Altarum.

Despite the small number of children initially tested, the strength of that correlation did show some promise as a predictor of sleepiness and reduced attention.

The researchers are now studying more children. Confirmation of their initial findings could help to answer questions about how sleep apnea leads to daytime sleepiness.

"This could give us insight into the physiology of how sleep apnea causes sleep disruption, daytime sleepiness, attention deficit and behavioral problems," Chervin says. "Currently, we think sleepiness arises because apneas cause arousals that we can easily see in brain wave patterns. Maybe these obvious, full arousals are less important than thousands of briefer arousals, or microarousals, that can only be detected by computers. If we could prove this, we might improve our ability to identify who has a serious sleep and breathing problem and who might benefit from treatment."

In addition to Chervin and Burns, researchers included Deborah L. Ruzicka, RN, Ph.D., of the UMHS Sleep Disorders Center, and Nikolas S. Subotic, Ph.D., Christopher Roussi, MS., and Brian Thelen, Ph.D., from Emerging Technologies Group at Altarum Institute.

The University of Michigan and Altarum Institute have filed a provisional patent application on the signal-analysis algorithm used to track changes in the brain during the respiratory cycle. Funding for the study came from the National Institutes of Health, the University of Michigan General Clinical Research Center, and the nonprofit Altarum Institute.


Contact:
Nicole Fawcett, nfawcett@umich.edu, or
Kara Gavin, kegavin@umich.edu
(734) 764-2220

Nicole Fawcett | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>