Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Accelerate Global Agreement to Oversee Exploitation of South Pole “Extremophiles”


Ownership of genetic materials, environmental consequences in question as 21st Century bio-prospecting gets underway in Antarctica

Work should be stepped up on international agreements to oversee prospecting efforts in Antarctica by research institutions, universities and pharmaceutical companies to discover and stake ownership to promising organisms and compounds with genetic properties that make survival possible in extremely cold, arid and salty conditions, says a new UN University report.

Bioprospectors are starting to turn their attention to many of the world’s last frontiers, such as hydrothermal vents, the deep seabed, the water column of the high seas and polar ice caps. Indeed, according to the report[1], these frontiers have the potential to create a 21st Century “gold rush” – with bioprospectors trying to find and exploit the unique genetic and biochemical riches of “extremophiles,” organisms that have evolved unique characteristics to survive in Earth’s most hostile environments.

Many scientists believe that isolating and extracting the substances that allow these organisms to prosper could have enormous implications in biotechnology research, possibly leading to new cancer treatment drugs, antibiotics and industrial compounds.

But in fragile Antarctica this optimism is offset by warnings of significant consequences if an unregulated international “free-for-all” is allowed to develop.

“Biological prospecting for extremophiles is already occurring and is certain to accelerate in Antarctica and the southern oceans,” said Dr. A.H. Zakri, Director of UNU’s Institute of Advanced Studies, the Tokyo-based research center that conducted the study.

“This report suggests that efforts to exploit this new frontier are now threatening to outpace the capacity of national and international law to regulate such things as ownership of genetic materials, the issuing of patents on products that may arise from them, and the potential environmental consequences of harvesting these resources.”

The information is being released on the eve of a major global biodiversity meeting expected to attract more than 2,500 global officials and experts to Kuala Lumpur Feb. 9 to 20: the 7th Conference of Parties to the UN Convention on Biological Diversity. The extremophiles report was undertaken as part of a wide-ranging UNU-IAS initiative to help foster and support global “biodiplomacy[2].”

So far, the report says, biological prospecting in Antarctica has usually been carried out by consortia made up of public and private bodies, principally universities, research centers and biotechnology and pharmaceutical companies. This has made it difficult to draw a clear line between scientific research and commercial activities, although it is clear that much of the recent activity has led to commercial applications.

One of these is a glycoprotein, which functions as the ‘antifreeze’ that circulates in some Antarctic fish, preventing them from freezing in their sub–zero environments. It was discovered in the early 1970s by University of Illinois scientists conducting research funded by the US National Science Foundation.

The glycoprotein has a range of potential applications, including increasing the freeze tolerance of commercial plants, improving farm–fish production in cold climates, extending the shelf life of frozen food, improving surgery involving the freezing of tissues, and enhancing the preservation of tissues to be transplanted.

A preliminary scan of the US Patent Office database identified more than 300 references to Antarctica and 92 applications for patents that referred to Antarctica. A similar survey of European Patent Office records turned up 62 patents that rely on Antarctic biodiversity.

Some recent examples:
  • In 2002, Spain granted a patent for the wound healing and skin, hair and nail treatment properties of a glycoprotein extracted from an Antarctic bacteria;
  • The same year, an extract from an Antarctic green algae was patented in Germany for use in cosmetic skin treatment;
  • In 1997, a patent was granted by the Russian patent office for the production of biologically active substances with anti–tumour properties extracted from a strain of Antarctic black yeast;
  • An application currently with the US Patent Office covers a process for producing anti-freeze chemicals discovered in Antarctic bacteria which may help to increase the shelf life of foods such as ice-cream and frozen vegetables.

The report notes that developing commercial products from naturally occurring genetic resources or biochemical processes is typically a long, expensive and uncertain process. Even so, annual sales derived from traditional knowledge using genetic resources are $3 billion for the cosmetics and personal care industry, $20 billion for the botanical medicine sector and $75 billion for the pharmaceutical industry. More than 60 percent of the cancer drugs approved by the US Food and Drug Administration are of natural origin or are modeled on natural products.

“Although there has been a recent downturn in bioprospecting overall, it seems that the commercial use of naturally occurring extremophiles will increase, perhaps dramatically, in the near future,” said Hans van Ginkel, Rector of UN University.

“This study shows that the world must be better prepared for this, especially with respect to the Antarctica. Many issues and questions need to be resolved in advance of the further exploitation of genetic resources at the pole.”

UNU-IAS researcher Sam Johnston, report co-author, said the Antarctic Treaty System (ATS), the principal international agreement governing activity on the continent, does not specifically regulate bio-prospecting. Moreover, international policies governing bio-prospecting elsewhere are of limited value in addressing these questions.

Among the key issues not addressed by the ATS:

  • Who owns the Antarctic genetic resources?
  • How can scientists working in the Antarctic Treaty area legitimately acquire these resources?
  • What measures do scientists have to take to protect these resources?
  • Is benefit sharing feasible and, if so, with whom?
  • Who owns the commercial products resulting from these resources?
  • What is the relationship between the ATS and other international agreements e.g. the Convention on Biological Diversity (CBD) and the UN Convention on the Law of the Sea (UNCLOS)?
  • Does bio-prospecting contravene Article III of the ATS which stipulates that:
    • Information regarding plans for scientific programs in Antarctica should be exchanged.
    • Scientific personnel should be exchanged between expeditions and stations.
    • Scientific observations and results should be exchanged and made freely available.

The report concludes that although the physical impact of bioprospecting is currently addressed by the ATS regime, establishing the legal and policy basis that controls the commercialization of genetic resources, in line with the basic principles of the ATS as well as equity and fairness, is a more complex matter.

“Indeed, developing measures on bioprospecting in Antarctica would require some basic conceptual agreement about the overall aims of any regulation and the type of management system that is desirable, feasible, practical, and equitable.”

The study recommends further analysis and research with the emphasis on:

  • Information about existing and planned bio-prospecting activities in Antarctica.
  • Information on current and planned commercially orientated research involving Antarctic biota.
  • A working definition of bio-prospecting.
  • The legal issues relating to the ownership and protection of these resources?
  • Who owns the commercial products resulting from the resources?
  • Is benefit sharing feasible and if so with whom?
  • The relationship between the ATS and other international policies.
  • Is bio-prospecting contrary to Article III of the Treaty?
  • Preliminary views about the need for regulation or guidelines.

Terry Collins | UN University
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>