Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene predisposes infants to neurologic injury after heart surgery

27.01.2004


Study is among first to evaluate genetic susceptibility to neurodevelopmental problems in children with heart defects



Children with heart conditions who require surgery as infants may be more vulnerable to neurologic problems if they have a particular variety of a gene.

Researchers from the Cardiac Center and other divisions of The Children’s Hospital of Philadelphia found that children carrying the epsilon2 version (APOE å2) of the apolipoprotein E gene were significantly more likely to have worse neurodevelopmental outcomes at age one, compared to children who also underwent surgery but did not have APOE å2. APOE å2 occurs in approximately 8 percent of the population.


The APOE å2 gene variant may decrease the ability of neurons to repair themselves following open heart surgery, with the result that children score lower in developmental evaluations of psychomotor skills. The study was published in the December issue of the Journal of Thoracic and Cardiovascular Surgery.

"As surgical and medical advances have dramatically increased survival of children with heart defects in recent years, we have turned our attention to the adverse neurodevelopmental outcomes in some survivors," said cardiothoracic surgeon J. William Gaynor, M.D., the leader of the study. "Even among children with the same heart defect receiving the same surgeries, there is considerable variation in developmental outcome. This was one of the first studies to investigate the role of gene variants in influencing neurologic injury in children with congenital heart disease."

The research team evaluated 244 children at age one who had undergone surgery to repair a congenital heart defect at less than six months of age. All the children were patients at the Cardiac Center at The Children’s Hospital of Philadelphia.

Evaluators who were blinded to each child’s genotype assessed the children using the Bayley Scales of Infant Development. Within those measurements, children with APOE å2 had significantly lower scores in the Psychomotor Developmental Index (PDI), which assesses gross muscle function needed for crawling and walking. The PDI also assesses fine muscle skills such as those needed for grasping and imitating hand movements.

The association between APOE å2 and lower neurodevelopmental scores was consistent, even after researchers controlled for variables such as gestational age, age at surgery, socioeconomic status, type of cardiac defect and surgical techniques.

Apolipoprotein genes, which help to regulate how the body transports cholesterol in the blood, also affect neurons in the brain in ways that are incompletely understood, but which play a role in repair of the brain after injury. The apolipoprotein E epsilon4 (APOE å4) gene variant, which is more common than APOE å2, has been studied in adults, for whom it confers a higher risk of suffering Alzheimer’s disease and of worse recovery after brain injury or cardiac surgery. However, the researchers did not find that APOE e4 had an effect on neurodevelopment in children in the study.

In the analysis presented in the journal article, there were no significant differences between children with the APOE å2 gene and children with other APOE gene variants in the Mental Development Index (MDI), in neuromuscular examinations or in head circumference.

However, added Dr. Gaynor, further evaluation of a larger sample of eligible patients confirmed the lower scores on the PDI, and also found a significant effect of APOE å2 in predicting worse outcomes in the MDI, which assesses memory, language and social skills. Importantly, the larger sample (329 patients, compared to 244 in the journal article) also showed a link between APOE å2 and a smaller head circumference at one year of age, a finding consistent with poor brain growth. Dr. Gaynor presented these results at the American Heart Association Scientific Sessions in November.

"The adverse effect on neurodevelopment that we found at one year of age does not necessarily predict long-term outcome for these children," cautioned Dr. Gaynor. "Children will need to be evaluated as they reach school age to determine whether the APOE å2 gene is a risk factor for worse long-term outcome." Dr. Gaynor’s team recently received funding from the National Institutes of Health to pursue their outcome studies in the same children between ages four and five – a point at which the researchers will further gauge the patients’ developmental progress.


In addition to colleagues from The Children’s Hospital of Philadelphia, Dr. Gaynor’s co-authors were from Duke University Medical Center and the University of Washington, Seattle. The American Heart Association, the Pew Biomedical Scholar Program and the Fannie E. Rippel Foundation supported the study.

The Cardiac Center at The Children’s Hospital of Philadelphia is a comprehensive center for the care of infants, children and young adults with congenital and acquired heart disease. It was recently ranked as the best pediatric cardiology program in the United States by Child magazine.

Founded in 1855 as the nation’s first pediatric hospital, The Children’s Hospital of Philadelphia is ranked today as the best pediatric hospital in the nation by U.S. News & World Report and Child magazine. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children’s Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 430-bed hospital recognition as a leading advocate for children and adolescents from before birth through age 19. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>