Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thailand dengue hemorrhagic fever epidemics spread in waves emanating from Bangkok

22.01.2004


Findings Could Aid Treatment Planning and Prevention Strategies



Researchers at the Johns Hopkins Bloomberg School of Public Health studying dengue hemorrhagic fever epidemics in Thailand have determined that the disease radiates outward in a traveling wave from Bangkok, the nation’s largest city, to infect every province in the country. According to the researchers’ analysis, the spatial-temporal wave travels at a speed of 148 kilometers per month and takes about eight months to spread through the entire country. The analysis appears in the January 22, 2004, edition of the journal Nature.

“We used a new mathematical technique developed by NASA for analysis of waves in physical materials – like water waves and sound waves – to study “epidemic waves” of dengue cases. Our study is the first step to understanding the mechanism of how a disease like dengue spreads through the country,” said lead author Derek Cummings, a PhD candidate at the Johns Hopkins University’s Bloomberg School of Public of Health and Whiting School of Engineering. “Anticipating dengue epidemics and determining the causes of those epidemics could help us plan control strategies more effectively.”


Dengue fever is a mosquito-borne illness that infects 50 million to 100 million people worldwide each year, many of them children. Epidemics of the most serious and life-threatening form of the disease, dengue hemorrhagic fever, place a heavy burden on public health systems.

The number of cases of dengue hemorrhagic fever in Thailand varies widely from year to year. Cummings and his colleagues examined the spatial-temporal dynamics of dengue hemorrhagic fever in a data-set describing 850,000 infections that occurred between 1983 and 1997. Their analysis showed that outbreaks in provinces surrounding Bangkok were either synchronous or lag behind Bangkok, which indicated a repeating, spatial-temporal wave emanating from the city. The researchers do not know exactly why the wave occurs, but they believe it is related to the movement of people. Bangkok is heavily populated and it is the cultural and economic center of Thailand.

“Disease surveillance and control in Bangkok may help surrounding regions prepare for future outbreaks of dengue fever. Our results suggest that high priority should be placed on surveillance and control systems in urban areas of Southeast Asia,” said Donald S. Burke, MD, co-author of the study and professor of International Health at the School of Public Health.



“Traveling waves in the occurrence of dengue hemorrhagic fever in Thailand” was written by Derek A.T. Cummings, Rafael A. Irizarry, Norden E. Huang, Timothy P. Endy, Ananda Nisalak, Kummuan Ungchusak, and Donald S. Burke.

Research was supported by grants from the National Oceanic and Atmospheric Administration’s Joint Program on Climate Variability and Human Health and the Bill and Melinda Gates Foundation.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/Burke_Thailand_dengue.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>