Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human migration tracked in Stanford computer simulation

22.01.2004


Early humans migrating from Africa carried small genetic differences like so much flotsam in an ocean current. Today’s studies give only a snapshot of where that genetic baggage came to rest without revealing the tides that brought it there. Now researchers at the Stanford University School of Medicine have devised a model for pinpointing where mutations first appeared, providing a new way to trace the migratory path of our earliest ancestors.



The study was led by Luca Cavalli-Sforza, PhD, emeritus professor of genetics, who has spent most of his career tracking the evolution of modern humans. Much of his current work involves following mutations in the Y chromosome, which is passed exclusively from father to son, as humans migrated from Africa and spread to the rest of the world during the past 50,000 years.

These mutations, most of which cause no physical change, tend to appear at a constant rate, providing a genetic timer. For example, if a population has 10 mutations after 50,000 years of evolution from the common ancestor in Africa, then the fifth mutation probably arose 25,000 years ago. But where was the population located at that time? Until now genetics hasn’t had an answer.


"If we know the time when a mutation arose we know something. If we also knew the place we’d know almost everything," Cavalli-Sforza said.

With the help of senior application software developer Christopher Edmonds and statistician Anita Lillie, both researchers at Stanford, Cavalli-Sforza built a computer model to simulate how mutations spread in a migrating population. The results of this work are published in this week’s online issue of Proceedings of the National Academies of Science.

The group reduced the world’s continents to a simple rectangular grid. They populated the first few squares with computerized human populations and gave those electronic villages realistic rates for population growth, migration and mutations. The inhabitants had more than one child, on average, and those offspring could migrate to any neighboring square as long as it wasn’t filled to capacity. This population growth filled the initial squares to capacity and pushed the computerized people to migrate at a constant rate across their rectangular territory until the next space was filled.

When a mutation appeared within a population, descendants reproduced and migrated at the same rate as other individuals. Most of the mutations, however, simply disappeared due to chance.

Those mutations that stayed in the population until the simulation ended showed one of two patterns. If the mutation appeared in a heavily populated area, it had a lower chance of surviving for many generations or reaching high numbers. In these cases, the mutation remained extremely rare in the local population.

If a mutation appeared in a person at the edge of the migration front where the population was scarce, the mutation was more likely to spread through the population. The mutation-carrying person multiplied and the offspring migrated, taking the mutation to neighboring squares. If these neighboring squares were previously unoccupied, the mutated person had a high probability of reproducing and passing along the mutation. The mutation itself remained most common in the migratory wave front, a situation Cavalli-Sforza refers to as "surfing" the migratory wave.

Over the course of 64,000 simulations, the group came up with a model for finding a mutation’s origin. First they identified the mutation’s farthest edge - corresponding with a boundary such as the ocean or mountain range in human populations. Then they calculated the average area of where the mutation is distributed - called the mutation’s centroid. According to the models, the centroid is about half the distance between where the mutation arose and where it ended up.

In at least some simulations, the mutation no longer existed in the population where it first arose. Without the group’s way of estimating distance, there might be no trace of the mutation’s place of origin. Now they can generate a dated "we were here" sign to place on the route of human migration.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>