Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twitching whiskers tell all

21.01.2004


Study shows that perception is tied to movement



Our fingers run over surfaces; our eyes are in constant motion. This is all a part of "active sensing," key principles of which have now been uncovered by a Weizmann Institute study.

"We intuitively understand that active sensing should provide the brain with information very different from that which is acquired by mere passive sensing, (e.g. feeling without finger movement)," says Prof. Ehud Ahissar of the Neurobiology Department, "yet current experiments nearly always keep the organs stationary." Much of his recent research focuses on discovering how the sensory nerves in these organs perform when in motion. Such research, he hopes, will deepen our understanding of perception, and help optimize the design of artificial sensory aids for the deaf and blind.


Rats’ whiskers, which sweep back and forth to locate and appraise objects in the immediate vicinity, are an ideal tool for studying the active aspects of perception. Working with doctoral student Marcin Szwed and Dr. Knarik Bagdasarian, Ahissar recorded the transmissions of neurons that connect whiskers to the brain. Tracking these cells’ responses while whisker hairs actively swept over objects, they saw that two basic types of neurons came into play. The first, which they call whisking neurons, respond solely to the whisking motion itself, regardless of whether the whiskers touch an object or not.

The second type, which they dubbed touch neurons, informs the brain about the surface being touched. Some of these cells respond immediately upon contact; others relay further information during prolonged contact; and yet others fire briefly as contact is broken.

"These mechanisms were previously overlooked," says Szwed, "simply because the cells were rarely recorded during active movement." These latest findings, published in the Oct. 29 issue of Neuron, indicate that perception is a dynamic dance in which hands, eyes and whiskers move towards the world to actively seek out sensation.

Prof. Ehud Ahissar’s research is supported by the the Carl and Micaela Einhorn-Dominic Institute for Brain Research; the Nella and Leon Benoziyo Center for Neurosciences; the Abramson Family Foundation, Washington, D.C.; the Edith C. Blum Foundation, New York, NY; the Irving B. Harris Foundation, Chicago, IL; and Mrs. Esther Smidof, Switzerland. Prof. Ahissar is the incumbent of the Helen and Sanford Diller Family Professorial Chair in Neurobiology.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>