Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain receptor switches addiction on, off: study

21.01.2004


Findings suggest that enzyme may be manipulated phamalogically to control brain receptor



The discovery of a molecular "addiction switch" in the mammalian brain has the potential to control the addiction process in drug addicts, say U of T researchers.

A study published Jan. 18 in the online edition of Nature Neuroscience finds that a region of the brain called the VTA contains receptors that, when exposed to a certain enzyme, can control the switch from an addicted to non-addicted state and back again. This goes against previous ideas that viewed drug addiction as a permanent change in the brain, says lead author Steven Laviolette who conducted the research while a PhD student at U of T’s Department of Anatomy and Cell Biology with senior author Professor Derek van der Kooy.


"Our findings suggest that instead of a permanent alteration in the brain, there’s actually a switch that goes on between two separate systems (one that mediates the brain’s response to drugs while not yet addicted and the other that mediates response once addicted)," says Laviolette. "They also suggest we may be able to manipulate that switch pharmacologically to take drug addicts back to a non-addicted state in a relatively short period of time so they do not crave the drug."

The switch is a brain receptor known as GABA-A; an enzyme - carbonic anhydrase - produced by the body controls how the receptor behaves. In studies with rats, the researchers were able to manipulate the enzyme with a drug to control whether it turned this switch on or off. Without such intervention, the brain can switch back to a non-addicted state following a period of withdrawal from drugs - a process often measured in weeks. By manipulating the enzyme pharmacologically, however, that return to a non-addicted state in rats has been reduced to a matter of hours, says Laviolette, now a post-doctoral fellow at the University of Pittsburgh.

"The same anatomical pathways that we’re manipulating in rats also exist in humans so we hope that this will be applicable to human drug addiction as well," he says.

Collaborators on the study, funded by the Canadian Institutes of Health Research, included Roger Gallegos and Steven Henriksen of the Scripps Research Institute in California.


Jessica Whiteside is a news services officer with the department of public affairs.

CONTACT:
Steven Laviolette, ph: (412) 624-7332; email: Laviolette@bns.pitt.edu
U of T Public Affairs, ph: (416) 978-5948; email: jessica.whiteside@utoronto.ca

Jessica Whiteside | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040120b.asp

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>