Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reward mechanism involved in addiction likely regulates pair bonds between monogamous animals

21.01.2004


The reward mechanism involved in addiction appears to regulate lifelong social or pair bonds between monogamous mating animals, according to a Center for Behavioral Neuroscience (CBN) study of prairie voles published in the January 19 edition of the Journal of Comparative Neurology. The finding could have implications for understanding the basis of romantic love and disorders of the ability to form social attachments, such as autism and schizophrenia.

In their research, funded by the National Institute of Mental Health, Larry Young, PhD., associate professor of psychiatry and behavioral sciences at Emory University School of Medicine and an affiliate scientist at Yerkes National Primate Research Center; graduate student Miranda Lim; and Anne Murphy, PhD., associate professor of biology at Georgia State University, examined the distribution of two brain receptors in the ventral forebrain of monogamous prairie voles that have been previously tied to pair bond formation: oxytocin (OTR) and vasopressin V1a receptor (V1aR). Using receptor audiographic techniques, the scientists found that these receptors are confined to two of the brain’s reward centers, the nucleus accumbens and the ventral pallidum. V1aR receptors, which are thought to be activated in the male vole brain during pair bond formation, were confined largely to the ventral pallidum. OTR receptors, which play a crucial role in pair bond formation in females, were found mainly in the nucleus accumbens.

The V1aR and OTR receptors did not overlap between the two brain regions, and were equally distributed in the brains of male and female voles. According to Dr. Young, the findings, coupled with the close proximity of the nucleus accumbens and ventral pallidum-- two regions with heavily interconnected structures--suggest that a common neural circuit in male and female voles regulates pair bond formation.



Past studies have found the dopamine system of the nucleus accumbens produces the rewarding and sometimes addictive effects of sex, food and drugs of abuse. Dr. Young believes the same reward pathways are likely stimulated during and following pair bond formation.

"Although the process of pair bond formation results from the activity of two different neurochemicals in separate regions of the ventral forebrain in male and female vole brains," said Young, "the OTR and V1aR systems appear to activate two separate nodes of the same reward pathway to form and reinforce pair bonds."

In another finding, the CBN researchers determined that OTR and V1aR are closely located near the nerve fibers that release oxytocin and vasopressin. Lim speculated that their proximity likely facilitates pair bond formation during mating.

CBN studies currently underway continue to examine other components of the neural circuit involved in pair bond formation.

The monogamous prairie vole, which forms lifelong pair bonds, provides an ideal animal model for studying the neural basis of social attachment. In previous studies, CBN scientists have determined:
  • The genes for vasopressin and oxytocin are critical for the proper processing of social information;

  • A lack of genes for vasopressin and oxytocin receptors results in a deficit in social recognition and altered anxiety in mice;

  • Vasopressin and oxytocin play key roles in the formation of social attachments between animals. Increasing the amount of vasopressin receptors in the brain using gene transfer techniques can increase pair-bonding behavior in monogamous male prairie voles.


The Center for Behavioral Neuroscience, a National Science Foundation Science and Technology Center, is a research and education consortium consisting of Georgia State University, Emory University, Georgia Institute of Technology, and the five schools comprising the Atlanta University Center (Clark Atlanta University, Morehouse College, Morehouse School of Medicine, Morris Brown College, and Spelman College). CBN researchers study four aspects of social behavior: fear, aggression, affiliation, and reproduction.

The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Center is a multidisciplinary research institute recognized as a leader in biomedical and behavioral studies with nonhuman primates. Yerkes scientists are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Other research programs include cognitive development and decline, childhood visual defects, organ transplantation, the behavioral effects of hormone replacement therapy and social behaviors of primates. Leading researchers located worldwide seek to collaborate with Yerkes scientists.

Poul Olson | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>