Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol-dependence gene identified

15.01.2004


Investigators at Washington University School of Medicine in St. Louis, Indiana University School of Medicine and other centers have identified a gene that appears to increase the risk of alcoholism.



The study, published in the January issue of the journal Alcoholism: Clinical and Experimental Research, is the first to demonstrate an association between this particular gene and alcohol dependence.

The gene is related to a receptor that allows for the movement of Gamma-amino butyric acid (GABA) between nerve cells. GABA is the major inhibitory chemical in the central nervous system.


"There were lines of evidence from other studies -- animal studies, in vitro studies -- that suggested GABA receptors are involved in the behavioral effects of alcohol," says lead author Danielle M. Dick, Ph.D., research assistant professor of psychiatry at Washington University School of Medicine in St. Louis. "Because GABA receptor genes were likely candidates and previous studies had linked this area on chromosome 15 to alcoholism, we zeroed in on three GABA receptor genes but only found significant association with one of them."

The study was conducted as part of the national Collaborative Study on the Genetics of Alcoholism (COGA), an ongoing project involving interviews and DNA samples from more than 10,000 individuals from inpatient and outpatient alcohol treatment centers and their families. Families in the COGA study usually have several members with alcohol dependence.

For this study, the investigators analyzed DNA from 262 families, a total of 2,282 individuals. They isolated three genes on chromosome 15 -- GABRA5, GABRB3 and GABRG3 -- that sit very close together on the chromosome. Then the investigators used markers called SNPs (single nucleotide polymorphisms) to study differences between the participants’ genes.

The markers demonstrated small genetic differences did appear to influence the risk of alcohol dependence, but only in one of the genes: GABRG3.

But it is not known how GABRG3 influences alcoholism risk. Dick says previous research has suggested chemicals that increase GABA receptor activity can accentuate the behavioral effects of alcohol, such as sedation, loss of anxiety and problems with motor coordination. Conversely, chemicals that decrease GABA receptor activity can have the opposite effect.

"This suggests that somehow GABA reception might be involved in these behavioral effects," Dick says. "But we don’t know exactly how, so we can’t tell what the pathway might be that leads from GABA receptor genes to alcoholism."

Finding that GABA is involved in alcohol abuse and dependence supports a current theory that predisposition to alcoholism might be inherited as part of a general state of brain overactivation. People at risk for alcoholism may inherit a variety of genes that contribute to this state. Perhaps alcohol normalizes that state of excitability, leading people with a hyperexcited nervous system to use alcohol more frequently in order to normalize brain circuits. That, in turn, would put them at greater risk for developing alcohol dependence.

Dick says it is important to point out that genetic make-up does not necessarily mean a person is doomed to become an alcoholic.

"One reason it is so difficult to find genes involved in psychiatric disorders is that there is an interplay between genetic and environmental factors," she says. "A person can carry all kinds of genes that predispose them to alcohol dependence, but if they never take a drink, they won’t become an alcoholic."


Dick DM, Edenberg HJ, Xuei X, Goate A, Kuperman S, Schuckit M, Crowe R, Smith TL, Porjexa B, Begleiter H, Foroud T. Association of GABRG3 with alcohol dependence. Alcoholism: Clinical & Experimental Research, vol. 28:1, pp. 2042-2047, January 2004.

This research was funded by the National Institute of Alcohol Abuse and Alcoholism of the National Institutes of Health.

Jim Dryden | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/C3F47FE4B380C92986256E19006CE5F1?OpenDocument
http://medinfo.wustl.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>