Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol-dependence gene identified

15.01.2004


Investigators at Washington University School of Medicine in St. Louis, Indiana University School of Medicine and other centers have identified a gene that appears to increase the risk of alcoholism.



The study, published in the January issue of the journal Alcoholism: Clinical and Experimental Research, is the first to demonstrate an association between this particular gene and alcohol dependence.

The gene is related to a receptor that allows for the movement of Gamma-amino butyric acid (GABA) between nerve cells. GABA is the major inhibitory chemical in the central nervous system.


"There were lines of evidence from other studies -- animal studies, in vitro studies -- that suggested GABA receptors are involved in the behavioral effects of alcohol," says lead author Danielle M. Dick, Ph.D., research assistant professor of psychiatry at Washington University School of Medicine in St. Louis. "Because GABA receptor genes were likely candidates and previous studies had linked this area on chromosome 15 to alcoholism, we zeroed in on three GABA receptor genes but only found significant association with one of them."

The study was conducted as part of the national Collaborative Study on the Genetics of Alcoholism (COGA), an ongoing project involving interviews and DNA samples from more than 10,000 individuals from inpatient and outpatient alcohol treatment centers and their families. Families in the COGA study usually have several members with alcohol dependence.

For this study, the investigators analyzed DNA from 262 families, a total of 2,282 individuals. They isolated three genes on chromosome 15 -- GABRA5, GABRB3 and GABRG3 -- that sit very close together on the chromosome. Then the investigators used markers called SNPs (single nucleotide polymorphisms) to study differences between the participants’ genes.

The markers demonstrated small genetic differences did appear to influence the risk of alcohol dependence, but only in one of the genes: GABRG3.

But it is not known how GABRG3 influences alcoholism risk. Dick says previous research has suggested chemicals that increase GABA receptor activity can accentuate the behavioral effects of alcohol, such as sedation, loss of anxiety and problems with motor coordination. Conversely, chemicals that decrease GABA receptor activity can have the opposite effect.

"This suggests that somehow GABA reception might be involved in these behavioral effects," Dick says. "But we don’t know exactly how, so we can’t tell what the pathway might be that leads from GABA receptor genes to alcoholism."

Finding that GABA is involved in alcohol abuse and dependence supports a current theory that predisposition to alcoholism might be inherited as part of a general state of brain overactivation. People at risk for alcoholism may inherit a variety of genes that contribute to this state. Perhaps alcohol normalizes that state of excitability, leading people with a hyperexcited nervous system to use alcohol more frequently in order to normalize brain circuits. That, in turn, would put them at greater risk for developing alcohol dependence.

Dick says it is important to point out that genetic make-up does not necessarily mean a person is doomed to become an alcoholic.

"One reason it is so difficult to find genes involved in psychiatric disorders is that there is an interplay between genetic and environmental factors," she says. "A person can carry all kinds of genes that predispose them to alcohol dependence, but if they never take a drink, they won’t become an alcoholic."


Dick DM, Edenberg HJ, Xuei X, Goate A, Kuperman S, Schuckit M, Crowe R, Smith TL, Porjexa B, Begleiter H, Foroud T. Association of GABRG3 with alcohol dependence. Alcoholism: Clinical & Experimental Research, vol. 28:1, pp. 2042-2047, January 2004.

This research was funded by the National Institute of Alcohol Abuse and Alcoholism of the National Institutes of Health.

Jim Dryden | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/C3F47FE4B380C92986256E19006CE5F1?OpenDocument
http://medinfo.wustl.edu/

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>