Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First link found in humans between common gene and artery-clogging disease

31.12.2003


Study in NEJM indicates dietary fatty acids may influence atherosclerosis in a segment of the population genetically at risk



Scientists have found the first strong link in humans between a common gene and risk for the disease that leads to most heart attacks and strokes, according to results of a study by researchers at the Keck School of Medicine of the University of Southern California and the David Geffen School of Medicine at UCLA.

People with a variant form of a gene called 5-lipoxygenase (ALOX5) have a greater risk of atherosclerosis, a build-up of cholesterol in artery walls that contributes to heart disease, scientists report in the Jan. 1 issue of the New England Journal of Medicine. The high-risk form of ALOX5 occurred in about 5 percent of participants in the Los Angeles Atherosclerosis Study, which follows the cardiovascular health of 470 utility workers in Southern California.


Researchers have known for many years that atherosclerosis risk may run in families, yet the genetic markers known to increase risk for atherosclerosis either were rare or made only a slight difference. This new finding, however, indicates that a substantial proportion of people carry a form of ALOX5 that may wield potent effects on cardiovascular disease.

"One of the most interesting aspects of this new finding is that the effect of the ALOX5 gene on atherosclerosis depends upon diet," says co-author James Dwyer, Ph.D., professor of preventive medicine at the Keck School of Medicine of USC and the Los Angeles Atherosclerosis Study’s principal investigator. "The adverse effect of this gene is increased by dietary intake of certain n-6 polyunsaturated fats, while the adverse effect is blocked by intake of fish oils containing n-3 polyunsaturated fatty acids."

For those who carry a high-risk form of ALOX5, the "bad" fats are two n-6 polyunsaturated fats called arachidonic acid and linoleic acid. Arachidonic acid is found in some meats, while linoleic acid is found in many vegetable oils. The "good" fats for this group are n-3 (or omega-3) fatty acids, found mainly in oily fish such as salmon.

This diet-gene interaction makes scientific sense, since the ALOX5 protein serves to convert fatty acids into molecules involved in inflammation, and scientists believe atherosclerosis is an inflammatory process.

Results also suggest that people with a high-risk form of ALOX5 could reduce their risk by eating less n-6 polyunsaturated fats and more n-3 polyunsaturated fatty acids. In the rest of the population, eating these fatty acids seems to have little impact on atherosclerosis, Dwyer adds-although there is substantial evidence that consuming a lot of n-3 fatty acids from fish oils prevents arrhythmias involved in sudden cardiac death.

Co-author Hooman Allayee, Ph.D., human genetics researcher at the David Geffen School of Medicine at UCLA, noted that earlier research links ALOX5 to asthma, so physicians might potentially prescribe existing asthma medications to prevent and control atherosclerosis in those genetically at high risk.

"Our conclusions suggest that 5-lipoxygenase could be used as a genetic marker for heart disease, and should lead to improved diagnosis, prevention and treatment for atherosclerosis," Allayee says.

The team’s work was driven by a mouse model developed by Margarete Mehrabian, Ph.D., senior author and UCLA assistant professor of human genetics. She was the first to show that eliminating the gene from the mouse genome helps protect against atherosclerosis, even when the rodent ate a fat-heavy diet. Other researchers have shown that knocking out other inflammatory genes can protect mice against atherosclerosis, but attempts to link alterations in inflammatory genes to atherosclerotic disease in humans generally has been disappointing.

For this study, the team examined 470 healthy middle-aged women and men. Researchers recorded each participant’s diet over 18 months and used ultrasound to measure the thickness of carotid artery walls in each participant-a gauge of atherosclerosis and heart disease risk.

Scientists also examined the ALOX5 gene in DNA sampled from each participant. The ALOX5 gene can be found in a few different varieties, or polymorphisms, within the population, in addition to the common form of the gene.

The scientists found that artery walls were as much as 18 percent thicker among participants who did not have the common form of ALOX5. And walls thickened faster among those with a high-risk version of ALOX5 who ate more food containing n-6 polyunsaturated fatty acids, while a diet abundant in n-3 polyunsaturated fatty acids seemed to protect them.

Researchers found the ALOX5 variations more frequently in certain ethnic groups. About 20 percent of African Americans and Asian Americans had the genetic variant, compared to less than 5 percent of Latinos and non-Latino whites.


A grant from the National Institutes of Health supports the Los Angeles Atherosclerosis Study. The American Heart Association also sponsored the research.

James H. Dwyer, Hooman Allayee, Kathleen M. Dwyer, Jing Fan, Huiyun Wu, Rebecca Mar, Aldons J. Lusis, Margarete Mehrabian, "Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. The Los Angeles Atherosclerosis Study," New England Journal of Medicine. 2004, Vol.350, No. 1, pp. 29-37.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>