Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nomadic outposts of transplanted stem cells tracked in Stanford study

16.12.2003


Doctors regularly inject stem cells into patients whose bone marrow has been destroyed by chemotherapy or radiation, but they haven’t known where these cells go after being injected. Research at the Stanford University School of Medicine has yielded an unexpected answer: when injected into mice, these cells may set up camp in one tissue early on but then move to another location or disappear entirely.



Published in the Dec. 15 online edition of the Proceedings of the National Academies of Science, the work upsets current thinking that transplanted stem cells find a habitable niche, settle in for the long haul and begin producing new blood cells. Instead, the newly transplanted cells drift throughout the body, nestling in one of a few homes where their populations subsequently wax and wane until some finally flourish.

Researchers said the procedure used to follow the injected cells’ movements could one day help scientists hone their techniques for transplanting bone-marrow stem cells in humans and optimize therapies for cancer and immunodeficiencies. Developing these types of new stem cell-based treatments for cancer is among the primary goals of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.


Yu-An Cao, PhD, a research associate and first author of the paper, said that until now injecting bone-marrow stem cells into a patient was like injecting them into a black box. "We didn’t know where those cells were going," he said. Watching the fates of these cells after transplantation had raised more questions than it answered. He said in testing a new protocol, they now can watch to see whether the cells proliferate more quickly or if the patterns of inhabitation are altered.

"We are really curious about what is happening," Cao said. "We want to know why the process is so dynamic with unpredictable fates for the initial stem cell foci. There’s no obvious reason for the stem cells to leave what appears to be a perfectly good place to homestead and proliferate."

Eventually, the work also could help guide transplantation procedures using other types of stem cells. Cao said an upcoming experiment will use the same technique to monitor transplanted neuronal stem cells. "We can monitor the fate of those stem cells and help evaluate transplantation protocols," he said. This type of approach could speed the development of stem cell transplantation therapies for disorders such as Parkinson’s disease.

Cao and Christopher Contag, PhD, assistant professor of pediatrics, radiology, microbiology and immunology, and lead author of the paper, were able to follow the transplanted cells’ travels because they all made a firefly protein called luciferase. This protein produces a dim light when it comes in contact with another molecule called luciferin. Unlike fireflies, mice don’t normally make luciferin, but the recipient mice received doses of the molecule throughout the experiment. Once injected into the recipient mice - whose bone marrow had been destroyed by radiation - the luciferase-producing transplanted cells produced a faint glow. Like a campfire at a new settlement, this dim light pinpointed the cells’ location.

Although the light from luciferase isn’t bright enough to see by eye, an ultrasensitive video camera originally developed by Contag can detect the faint light and show researchers where the glowing cells have settled. The experiment highlighted a handful of stem cell resting places, including the spleen and the bone marrow in the vertebrae, thighbone, shinbone, skull, ribs and sternum, where stem cells were already known to produce new blood cells.

Of all the locations, the spleen and the vertebrae were the two most likely sites for the new cells to settle. These are also the two roomiest compartments, according to Contag. "Where the cells go initially seems to relate to the size of the compartment and its openness," he said. If that location contained existing stem cells, the transplanted stem cell would detect signals indicating, "this compartment is full, we don’t want you here," he added. An empty compartment probably lacks these unwelcoming signals. "The cell knows there’s an empty seat to jump into, and now we can watch them play musical chairs - we just don’t hear the music yet."

What surprised the researchers is how much the pattern varied. In many cases one location would initially house a healthy population of glowing stem cells, only to have that population fade over time while daughter cells set up camp at a distant location. In other mice, locations that initially contained a languishing population of cells would suddenly flourish. When the researchers took stem cells from sites within one transplanted animal and put them into a second mouse lacking bone marrow, those stem cells once again seemed to take a random path to new niches and started the game of musical chairs over again. "This shows that the niche preferences aren’t programmed into the cells," Contag said.

Other Stanford researchers who contributed the work include postdoctoral scholars Amy Wagers, PhD, and Andreas Beilhack, PhD; technician Joan Dusich; research associate Michael Bachmann, MD, DSc; Robert Negrin, MD, associate professor of medicine; and Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology and director of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.

Contag is one of the founders of Xenogen, which makes the sensitive video camera used in this study.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>