Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nomadic outposts of transplanted stem cells tracked in Stanford study

16.12.2003


Doctors regularly inject stem cells into patients whose bone marrow has been destroyed by chemotherapy or radiation, but they haven’t known where these cells go after being injected. Research at the Stanford University School of Medicine has yielded an unexpected answer: when injected into mice, these cells may set up camp in one tissue early on but then move to another location or disappear entirely.



Published in the Dec. 15 online edition of the Proceedings of the National Academies of Science, the work upsets current thinking that transplanted stem cells find a habitable niche, settle in for the long haul and begin producing new blood cells. Instead, the newly transplanted cells drift throughout the body, nestling in one of a few homes where their populations subsequently wax and wane until some finally flourish.

Researchers said the procedure used to follow the injected cells’ movements could one day help scientists hone their techniques for transplanting bone-marrow stem cells in humans and optimize therapies for cancer and immunodeficiencies. Developing these types of new stem cell-based treatments for cancer is among the primary goals of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.


Yu-An Cao, PhD, a research associate and first author of the paper, said that until now injecting bone-marrow stem cells into a patient was like injecting them into a black box. "We didn’t know where those cells were going," he said. Watching the fates of these cells after transplantation had raised more questions than it answered. He said in testing a new protocol, they now can watch to see whether the cells proliferate more quickly or if the patterns of inhabitation are altered.

"We are really curious about what is happening," Cao said. "We want to know why the process is so dynamic with unpredictable fates for the initial stem cell foci. There’s no obvious reason for the stem cells to leave what appears to be a perfectly good place to homestead and proliferate."

Eventually, the work also could help guide transplantation procedures using other types of stem cells. Cao said an upcoming experiment will use the same technique to monitor transplanted neuronal stem cells. "We can monitor the fate of those stem cells and help evaluate transplantation protocols," he said. This type of approach could speed the development of stem cell transplantation therapies for disorders such as Parkinson’s disease.

Cao and Christopher Contag, PhD, assistant professor of pediatrics, radiology, microbiology and immunology, and lead author of the paper, were able to follow the transplanted cells’ travels because they all made a firefly protein called luciferase. This protein produces a dim light when it comes in contact with another molecule called luciferin. Unlike fireflies, mice don’t normally make luciferin, but the recipient mice received doses of the molecule throughout the experiment. Once injected into the recipient mice - whose bone marrow had been destroyed by radiation - the luciferase-producing transplanted cells produced a faint glow. Like a campfire at a new settlement, this dim light pinpointed the cells’ location.

Although the light from luciferase isn’t bright enough to see by eye, an ultrasensitive video camera originally developed by Contag can detect the faint light and show researchers where the glowing cells have settled. The experiment highlighted a handful of stem cell resting places, including the spleen and the bone marrow in the vertebrae, thighbone, shinbone, skull, ribs and sternum, where stem cells were already known to produce new blood cells.

Of all the locations, the spleen and the vertebrae were the two most likely sites for the new cells to settle. These are also the two roomiest compartments, according to Contag. "Where the cells go initially seems to relate to the size of the compartment and its openness," he said. If that location contained existing stem cells, the transplanted stem cell would detect signals indicating, "this compartment is full, we don’t want you here," he added. An empty compartment probably lacks these unwelcoming signals. "The cell knows there’s an empty seat to jump into, and now we can watch them play musical chairs - we just don’t hear the music yet."

What surprised the researchers is how much the pattern varied. In many cases one location would initially house a healthy population of glowing stem cells, only to have that population fade over time while daughter cells set up camp at a distant location. In other mice, locations that initially contained a languishing population of cells would suddenly flourish. When the researchers took stem cells from sites within one transplanted animal and put them into a second mouse lacking bone marrow, those stem cells once again seemed to take a random path to new niches and started the game of musical chairs over again. "This shows that the niche preferences aren’t programmed into the cells," Contag said.

Other Stanford researchers who contributed the work include postdoctoral scholars Amy Wagers, PhD, and Andreas Beilhack, PhD; technician Joan Dusich; research associate Michael Bachmann, MD, DSc; Robert Negrin, MD, associate professor of medicine; and Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology and director of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.

Contag is one of the founders of Xenogen, which makes the sensitive video camera used in this study.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>