Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical gradient steers nerve growth in spinal cord

12.12.2003


A research team at the University of Chicago has discovered a crucial signaling pathway that controls the growth of nascent nerves within the spinal cord, guiding them toward the brain during development.



The study, published in the Dec. 12, 2003, issue of the journal Science, solves a long-standing scientific mystery. It may also help restore function to people with paralyzing spinal cord injuries.

"This is the first guidance mechanism that regulates growth of nerve cells up and down the spinal cord," said Yimin Zou, Ph.D., assistant professor of neurobiology, pharmacology and physiology at the University of Chicago.


"This is exciting to scientists because these neurons are the primary model system we use to understand assembly of the nervous system," he said. "It’s exciting to clinicians because it could help regenerate damaged axons in the central nervous system."

The study focused on commissural neurons, which are found in the spinal cord. These neurons receive sensory signals such as pain, heat or cold from the primary neurons that reach from the hands or feet, for example, to the spinal cord. The commissural neurons relay those signals up the spinal cord to the nerve cells that process the information in the brain.

In a meticulous series of experiments with rats, Zou and colleagues show that a gradient of chemoattractant(s) along the spinal cord, probably formed by one or multiple Wnt proteins, lures growing commissural neurons toward the brain.

The Wnt family of proteins carry signals from cell to cell, regulating the interactions between cells during many development processes. Wnt proteins bind to receptors of the "Frizzled" family on the cell surface.

In the Science paper, Zou and colleague show that the Wnt gradient is detected by a receptor known as Frizzled3, found at the tips of these growing neurons. Commissural axons in Frizzled3-deficient mice (generously provided by Jeremy Nathans of Johns Hopkins Medical School) lost directionality of growth along the spinal cord.

If Wnt proteins could be used to entice damaged commissural neurons to regenerate and restore the connections between nerve cells of the spinal cord and the brain, it could revolutionize treatment of paralyzing spinal cord injuries.

Many researchers are studying ways to use stem cells to regenerate damaged tissues. Even if stem cells can be successfully "trained" to become the type of neurons needed and transplanted into the damaged central nervous system, "they still need to be guided precisely to their targets in order to rebuild the connections," explained Zou. "Understanding how the brain and spinal cord are connected during embryonic development should give us clues about how to repair these connections in adulthood."

But, "this is just half of the battle," Zou cautioned. A spine-injured patient would also have to rebuild the other nerves, which carry messages from the brain to the spinal cord, such as the corticospinal tracts. The cues that steer these brain axons down the spinal cord have not yet been identified.

Scientists have long wondered how something as complex as the human nervous system, with more than 100 billion neurons, each connected to a thousand or more target cells, gets correctly assembled.

In the 1990s, they found the first of many chemical signals that regulate the growth of commissural neurons, helping them locate, recognize and connect with their appropriate partners. Several sets of signals work together to guide these budding nerve cells through each step.

These cues act on the growing tips of axons, long narrow processes sent out by neurons in search of other nerve cells. Axons are tipped with growth cones that can detect extracellular signals, such as Wnt4, and then grow toward or away from the source.

The axon’s journey from the cell body of a commissural neuron, found at the back of the spinal cord, up to the brain is a long and complicated one. It relies on the coordinated action of several signaling systems, each controlling one part of the journey then handing off to a different set of cues.

Substances known as Netrin-1 and Sonic hedgehog, for example, tell the axons from commissural neurons to grow from the back of the spinal cord to the front. As these axons cross the midline, they stop responding to Netrin and Sonic hedgehog but begin to respond to a new set of proteins, known as Slits and Semaphorins, that repel them, shifting the axis of growth away from back to front (dorsal-ventral) and toward top to bottom (anterior-posterior).

At that point, Wnt proteins take over, drawing the axons up toward the brain. Without the Wnt/Frizzled signaling, the axons wander aimlessly, "knotting and stalling," noted the authors.

These findings will also allow scientists to explore "how growth cones undergo remodeling during navigation so that they constantly adjust the direction of their growth," Zou added. "This should help explain how the complicated connections in our nervous system are established and potentially lead to ways to remobilize the guidance programs to repair the damaged circuits in adulthood."


The March of Dimes, the Schweppe Foundation, the University of Chicago Brain Research Foundation and the Sloan Foundation supported this research.

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>