Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study in pediatrics shows nitric oxide therapy for newborns effective and cost saving

08.12.2003


Breakthrough treatment benefits patients and is less expensive than standard therapy



An inhaled treatment for critically ill newborns is less invasive, more effective and costs less than the treatment that has traditionally been used to treat a potentially fatal condition called hypoxic respiratory failure (HRF), according to a study published today in the journal Pediatrics.

The study focuses on the positive effects of inhaled nitric oxide for the treatment of HRF and reveals a rarity in today’s world of rising medical costs: a breakthrough treatment that benefits patients and is less expensive than the standard treatment.


"It’s almost unprecedented to hear of an advanced medication that actually saves money compared with an older treatment," said Derek C. Angus, M.D., the study’s lead author and director of the Clinical Research, Investigation and Systems Modeling of Acute Illness (CRISMA) laboratory at the University of Pittsburgh. "When you are treating a critically ill baby, you want the best treatment available no matter what the cost. It’s heartening to learn that in the case of babies with hypoxic respiratory failure, we can offer state-of-the-art treatment that improves outcomes in comparison to traditional care and does so at potentially reduced costs overall."

HRF develops in newborns whose lungs cannot deliver enough oxygen to their bodies, causing them to appear bluish and endangering their lives. The condition often appears on the first day after birth, and affects about 30,000 full-term and near-term infants each year. There is no prenatal test or other way to predict which infants will develop HRF, so there is no known way to prevent the condition.

In the past, the only effective treatment for newborns with HRF who did not respond to standard care was an invasive surgical procedure known as extracorporeal membrane oxygenation (ECMO), which involves cutting a newborn’s jugular vein and putting the baby on a heart-lung machine to oxygenate the blood. Besides being invasive, the procedure has the potential to cause severe complications.

Nitric oxide, by contrast, is administered as an inhaled gas, and has few potential complications. But while hospital stays involving ECMO are reimbursed by private and government insurance plans, experts say that reimbursement for inhaled nitric oxide traditionally has been inadequate. This is based in large part on the fact that it is a newer treatment than ECMO, and thus reimbursement policies have not "caught up" to the fact that the therapy is now more widely used.

"Many therapies and life-saving equipment readily accepted by society are quite costly," said Maria Hardin, vice president of patient services for the National Organization for Rare Disorders (NORD). "Perhaps now that we have hard data on the cost savings this treatment provides, insurers will do a better job of covering it."

Key Study Findings

The new study shows that inhaled nitric oxide actually saves a significant amount of money when compared with the older and more invasive ECMO procedure:


For every 100 newborns with HRF, treatment with inhaled nitric oxide resulted in a cost savings of more than $440,000. This savings occurred among newborns who did not need to be transferred to another hospital for ECMO treatment.
Much of the cost savings stems from the avoidance of ECMO, a costly surgical procedure.
Treating newborns with inhaled nitric oxide at local hospitals (rather than higher-level hospitals that also provide ECMO) was most cost-effective, because when the treatment prevented the need for ECMO, it also prevented the cost of transferring the baby to the ECMO center.
Using the data from two randomized controlled trials and other real-life experiences with ECMO and inhaled nitric oxide, researchers at The University of Pittsburgh’s CRISMA laboratory developed a cost-effectiveness model that estimated treatment outcomes and costs associated with treatment and recovery. The researchers looked at two scenarios: a "base case" where babies were transferred to advanced-care hospitals where ECMO was available, and a "reference case," where nitric oxide therapy was administered at local hospitals. Both scenarios suggested that nitric oxide therapy was cheaper and more effective than ECMO. The base case study showed a savings of $1,880 per case, while the reference case showed an even higher savings – $4,400 per case.

"We now have strong evidence that I think will surprise many physicians and hospitals," Dr. Angus said. "Hopefully, this will encourage everyone to take a new look at just how important this therapy is."

In December 1999, the U.S. Food and Drug Administration (FDA) approved nitric oxide for inhalation (marketed under the trade name INOmax®) used in conjunction with ventilatory support and other appropriate agents, for the treatment of term and near-term (>34 weeks) neonates with HRF associated with clinical or echocardiographic evidence of pulmonary hypertension (high blood pressure in the lungs). The drug works by relaxing smooth-muscle cells in blood-vessel walls in the lungs, allowing the lungs to properly oxygenate the blood and provide it to the rest of the body. As with all pharmaceuticals, inhaled nitric oxide has side effects. The treating physician needs to assess the risk versus the benefit for the individual patient. This study was supported in part by a grant from INO Therapeutics, Inc., which manufactures INOmax®.

Todd Ringler | EurekAlert!
Further information:
http://www.edelman.com/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>