Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast model yields insights into Parkinson’s disease

05.12.2003


Scientists who developed the first yeast model of Parkinson’s disease (PD) have been able to describe the mechanisms of an important gene’s role in the disease. Tiago Fleming Outeiro, Ph.D., and Susan Lindquist, Ph.D., of the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, studied the gene’s actions under normal conditions and under abnormal conditions to learn how and when the gene’s product, alpha-synuclein, becomes harmful to surrounding cells. The scientists created a yeast model that expresses the alpha-synuclein gene, which has been implicated in Parkinson’s disease (PD). Yeast models are often used in the study of genetic diseases because they offer researchers a simple system that allows them to clarify how genes work.



The National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, funded the study, which appears in the December 5, 2003, issue of Science.

The alpha-synuclein protein, which is found broadly in the brain, has been implicated in several neurodegenerative disorders. Sometimes a mutation or a misfolding of the protein causes the problems; other times there are too many copies of the normal gene. A study earlier this year reported that patients with a rare familial form of PD had too many normal copies of the alpha-synuclein gene, which resulted in a buildup of protein inside brain cells, causing the symptoms of PD.


Drs. Outeiro and Lindquist conducted their study by creating one yeast that expresses wild type synuclein, using the normal gene, and another yeast that expresses two mutant forms, using a mutated version of the gene found in patients with PD.

One theory for the cause of PD is that an aging brain no longer has the capacity to cope with accumulating or misfolding proteins. A normal healthy brain has the ability to clear out excess or mutant proteins through a process known as the quality control system. In the yeast model of PD, when the scientists doubled the expression of the alpha-synuclein gene it "profoundly changed" the fate of the yeast’s quality control system, and alpha-synuclein appeared in large clumps of cells (inclusion bodies). This did not happen when they studied the actions of a single copy of the wild type synuclein. These inclusion bodies have a toxic effect that causes cell death and neurodegeneration.

"Just a twofold difference in expression was sufficient to cause a catastrophic change in behavior," the scientists report in their paper.

"These changes may give insight into important changes that happen when alpha-synuclein is overexpressed in Parkinson’s patients," said Diane Murphy, Ph.D., a program director at the NINDS. "Dr. Lindquist is well known for her studies of yeast models of prion disease, and we are delighted she has extended her research to the important field of Parkinson’s disease."

PD is the second most common neurodegenerative disease after Alzheimer’s disease and is thought to affect 500,000 Americans.


The NIH’s National Institute of Neurological Disorders and Stroke leads Federal efforts to conduct and support basic and clinical research on diseases of the brain and central nervous system. The agencies are part of the U.S. Department of Health and Human Services.

"Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology," Outeiro, T.F. and Lindquist, S. Science, Vol. 302, pp. 1772-1775.

Margo Warren | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>