Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast model yields insights into Parkinson’s disease

05.12.2003


Scientists who developed the first yeast model of Parkinson’s disease (PD) have been able to describe the mechanisms of an important gene’s role in the disease. Tiago Fleming Outeiro, Ph.D., and Susan Lindquist, Ph.D., of the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, studied the gene’s actions under normal conditions and under abnormal conditions to learn how and when the gene’s product, alpha-synuclein, becomes harmful to surrounding cells. The scientists created a yeast model that expresses the alpha-synuclein gene, which has been implicated in Parkinson’s disease (PD). Yeast models are often used in the study of genetic diseases because they offer researchers a simple system that allows them to clarify how genes work.



The National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, funded the study, which appears in the December 5, 2003, issue of Science.

The alpha-synuclein protein, which is found broadly in the brain, has been implicated in several neurodegenerative disorders. Sometimes a mutation or a misfolding of the protein causes the problems; other times there are too many copies of the normal gene. A study earlier this year reported that patients with a rare familial form of PD had too many normal copies of the alpha-synuclein gene, which resulted in a buildup of protein inside brain cells, causing the symptoms of PD.


Drs. Outeiro and Lindquist conducted their study by creating one yeast that expresses wild type synuclein, using the normal gene, and another yeast that expresses two mutant forms, using a mutated version of the gene found in patients with PD.

One theory for the cause of PD is that an aging brain no longer has the capacity to cope with accumulating or misfolding proteins. A normal healthy brain has the ability to clear out excess or mutant proteins through a process known as the quality control system. In the yeast model of PD, when the scientists doubled the expression of the alpha-synuclein gene it "profoundly changed" the fate of the yeast’s quality control system, and alpha-synuclein appeared in large clumps of cells (inclusion bodies). This did not happen when they studied the actions of a single copy of the wild type synuclein. These inclusion bodies have a toxic effect that causes cell death and neurodegeneration.

"Just a twofold difference in expression was sufficient to cause a catastrophic change in behavior," the scientists report in their paper.

"These changes may give insight into important changes that happen when alpha-synuclein is overexpressed in Parkinson’s patients," said Diane Murphy, Ph.D., a program director at the NINDS. "Dr. Lindquist is well known for her studies of yeast models of prion disease, and we are delighted she has extended her research to the important field of Parkinson’s disease."

PD is the second most common neurodegenerative disease after Alzheimer’s disease and is thought to affect 500,000 Americans.


The NIH’s National Institute of Neurological Disorders and Stroke leads Federal efforts to conduct and support basic and clinical research on diseases of the brain and central nervous system. The agencies are part of the U.S. Department of Health and Human Services.

"Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology," Outeiro, T.F. and Lindquist, S. Science, Vol. 302, pp. 1772-1775.

Margo Warren | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>