Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast model yields insights into Parkinson’s disease

05.12.2003


Scientists who developed the first yeast model of Parkinson’s disease (PD) have been able to describe the mechanisms of an important gene’s role in the disease. Tiago Fleming Outeiro, Ph.D., and Susan Lindquist, Ph.D., of the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, studied the gene’s actions under normal conditions and under abnormal conditions to learn how and when the gene’s product, alpha-synuclein, becomes harmful to surrounding cells. The scientists created a yeast model that expresses the alpha-synuclein gene, which has been implicated in Parkinson’s disease (PD). Yeast models are often used in the study of genetic diseases because they offer researchers a simple system that allows them to clarify how genes work.



The National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, funded the study, which appears in the December 5, 2003, issue of Science.

The alpha-synuclein protein, which is found broadly in the brain, has been implicated in several neurodegenerative disorders. Sometimes a mutation or a misfolding of the protein causes the problems; other times there are too many copies of the normal gene. A study earlier this year reported that patients with a rare familial form of PD had too many normal copies of the alpha-synuclein gene, which resulted in a buildup of protein inside brain cells, causing the symptoms of PD.


Drs. Outeiro and Lindquist conducted their study by creating one yeast that expresses wild type synuclein, using the normal gene, and another yeast that expresses two mutant forms, using a mutated version of the gene found in patients with PD.

One theory for the cause of PD is that an aging brain no longer has the capacity to cope with accumulating or misfolding proteins. A normal healthy brain has the ability to clear out excess or mutant proteins through a process known as the quality control system. In the yeast model of PD, when the scientists doubled the expression of the alpha-synuclein gene it "profoundly changed" the fate of the yeast’s quality control system, and alpha-synuclein appeared in large clumps of cells (inclusion bodies). This did not happen when they studied the actions of a single copy of the wild type synuclein. These inclusion bodies have a toxic effect that causes cell death and neurodegeneration.

"Just a twofold difference in expression was sufficient to cause a catastrophic change in behavior," the scientists report in their paper.

"These changes may give insight into important changes that happen when alpha-synuclein is overexpressed in Parkinson’s patients," said Diane Murphy, Ph.D., a program director at the NINDS. "Dr. Lindquist is well known for her studies of yeast models of prion disease, and we are delighted she has extended her research to the important field of Parkinson’s disease."

PD is the second most common neurodegenerative disease after Alzheimer’s disease and is thought to affect 500,000 Americans.


The NIH’s National Institute of Neurological Disorders and Stroke leads Federal efforts to conduct and support basic and clinical research on diseases of the brain and central nervous system. The agencies are part of the U.S. Department of Health and Human Services.

"Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology," Outeiro, T.F. and Lindquist, S. Science, Vol. 302, pp. 1772-1775.

Margo Warren | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>