Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death promotes learning growth

27.11.2003


Background



The hippocampal formation has long been associated with the execution of higher-order cognitive functions, and impairment of this structure following severe stress and aging has been linked to cognitive disturbances. In order to understand the involvement of the hippocampal formation in the mediation of normal and pathological behaviors, much attention has recently been devoted to hippocampal neurogenesis. The dentate gyrus of the hippocampal formation has the ability to generate new neurons throughout the entire life. Surviving de novo produced cells develop into granule neurons and integrate into the functional circuitry. Neurogenesis has been proposed to play a role in hippocampal-mediated learning and has been implicated in the appearance of behavioral pathologies associated with the hippocampal formation.

Aim of the work


Although evidence suggest that neurogenesis play a role in spatial learning, the effect of learning on cell proliferation remains unclear. The authors generated and tested the hypothesis that different phases of spatial learning measured in the Morris water maze have distinct actions on cell proliferation. In this task, two phases of learning can be distinguished: an early phase during which performance improves rapidly, and a late phase during which asymptotic levels of performance are reached. These two phases seem to involve different brain processes and consequently may differentially influence neurogenesis.

Results

The authors demonstrated that the late phase of learning has a multifaceted effect on neurogenesis depending on the birth date of new neurons. The number of newly born cells increased contingently with the late phase and a large proportion of these cells survived for at least 4 weeks and differentiated into neurons. In contrast, the late phase learning decreased the number of newly born cells produced during the early phase. This learning-induced decrease in the number of newly generated cells results most probably from the death of the cells. Strikingly, cell death and not proliferation was positively correlated with performance in the water-maze. Thus, rats with the lowest cell death were less able to acquire and use spatial information than those with the highest cell death.

Conclusion

The results reveal a complex modulation of learning on brain plasticity, which induces death and proliferation of different populations of cells. Most importantly, they introduce the notion that removing neurons from the adult brain can be an important process in learning and memory and a novel mechanism through which neurogenesis may influence normal and pathological behaviors.


Citation source: Molecular Psychiatry 2003 Volume 8, number 12, pages 974-982.

AUTHORS: Matè Daniel Döbrössy*, Elodie Drapeau*, Catherine Aurousseau, Michel Le Moal, Pier Vincenzo Piazza, Djoher Nora Abrous * have equally contributed to the work

INSERM U259, University of Bordeaux, Domaine de Carreire, Bordeaux, France

For further information on this work, please contact Dr. Nora Abrous, INSERM U.588, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France. Tel: 33-5-57-57-36-86, Fax: 33-5-56-96-68-93, E-mail: nora.abrous@bordeaux.inserm.fr

Aimee Midei | EurekAlert!
Further information:
http://www.naturesj.com/mp/
http://www.nature.com/mp

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>