Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death promotes learning growth

27.11.2003


Background



The hippocampal formation has long been associated with the execution of higher-order cognitive functions, and impairment of this structure following severe stress and aging has been linked to cognitive disturbances. In order to understand the involvement of the hippocampal formation in the mediation of normal and pathological behaviors, much attention has recently been devoted to hippocampal neurogenesis. The dentate gyrus of the hippocampal formation has the ability to generate new neurons throughout the entire life. Surviving de novo produced cells develop into granule neurons and integrate into the functional circuitry. Neurogenesis has been proposed to play a role in hippocampal-mediated learning and has been implicated in the appearance of behavioral pathologies associated with the hippocampal formation.

Aim of the work


Although evidence suggest that neurogenesis play a role in spatial learning, the effect of learning on cell proliferation remains unclear. The authors generated and tested the hypothesis that different phases of spatial learning measured in the Morris water maze have distinct actions on cell proliferation. In this task, two phases of learning can be distinguished: an early phase during which performance improves rapidly, and a late phase during which asymptotic levels of performance are reached. These two phases seem to involve different brain processes and consequently may differentially influence neurogenesis.

Results

The authors demonstrated that the late phase of learning has a multifaceted effect on neurogenesis depending on the birth date of new neurons. The number of newly born cells increased contingently with the late phase and a large proportion of these cells survived for at least 4 weeks and differentiated into neurons. In contrast, the late phase learning decreased the number of newly born cells produced during the early phase. This learning-induced decrease in the number of newly generated cells results most probably from the death of the cells. Strikingly, cell death and not proliferation was positively correlated with performance in the water-maze. Thus, rats with the lowest cell death were less able to acquire and use spatial information than those with the highest cell death.

Conclusion

The results reveal a complex modulation of learning on brain plasticity, which induces death and proliferation of different populations of cells. Most importantly, they introduce the notion that removing neurons from the adult brain can be an important process in learning and memory and a novel mechanism through which neurogenesis may influence normal and pathological behaviors.


Citation source: Molecular Psychiatry 2003 Volume 8, number 12, pages 974-982.

AUTHORS: Matè Daniel Döbrössy*, Elodie Drapeau*, Catherine Aurousseau, Michel Le Moal, Pier Vincenzo Piazza, Djoher Nora Abrous * have equally contributed to the work

INSERM U259, University of Bordeaux, Domaine de Carreire, Bordeaux, France

For further information on this work, please contact Dr. Nora Abrous, INSERM U.588, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France. Tel: 33-5-57-57-36-86, Fax: 33-5-56-96-68-93, E-mail: nora.abrous@bordeaux.inserm.fr

Aimee Midei | EurekAlert!
Further information:
http://www.naturesj.com/mp/
http://www.nature.com/mp

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>