Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes Control Severity of Heart Failure, Study Finds

17.11.2003


By screening the genomes of mice with heart failure, Duke University Medical Center researchers have discovered multiple stretches of DNA containing genes that modify the heart’s pumping ability and survival with the disease. The findings could point researchers to genes that determine the severity of heart failure in patients, according to the Duke team.


Douglas A. Marchuk, PhD
Photo Credit: Duke University Medical Center



"Our goal is to find novel genes that modify human heart failure by letting the mouse point us in the right direction," said Duke cardiologist Howard Rockman, M.D., noting that 99 percent of mouse genes are shared by humans. "Such genes would provide us the means to identify those heart failure patients having subtle genetic differences that make them more susceptible to poor outcomes."

That information would allow physicians to identify those patients in need of the most aggressive therapies and provide new targets for drug development, Rockman said. He and geneticist Douglas Marchuk, Ph.D., also of Duke, reported their findings in the Dec. 1, 2003, issue of Human Molecular Genetics. The work was supported by the National Institutes of Health, the French Federation of Cardiology and the Burroughs Wellcome Fund.


Heart failure -- a condition characterized by the inability of the heart muscles to pump enough blood to the body’s tissues -- affects nearly 5 million patients in the U.S. and is a growing public health concern, Rockman said. Despite the development of novel treatments, the one-year mortality rate for patients with heart failure is as high as 42 percent.

Yet heart failure patients exhibit significant variability in quality of life and survival with the condition, he said. "Following a heart attack, some patients are able to return to their normal lifestyle, while others are horribly debilitated," said Rockman.

In their study, the researchers set out to uncover chromosomal regions containing heart failure modifier genes responsible for some of that difference.

The researchers mated males of one mouse strain that had genetic mutations that conferred a very reproducible and severe form of heart failure, with females of another healthy mouse strain. Some of the resulting offspring exhibited severe heart failure, while others inherited genes from their healthy mothers that protected them from the disorder. By screening the genomes of the offspring, the team uncovered those genetic regions that modified the severity of heart failure.

The researchers found two genetic regions -- one on chromosome 13 and another on chromosome 18 -- linked to heart function and survival with heart failure. An additional region on chromosome 2 affected cardiac function with no effect on survival, while another on chromosome 4 influenced survival without impacting heart function in mice with heart failure, the team reported.

"The immediate cause of death for patients with heart failure can be the consequence of two different mechanisms: gradual pump failure or sudden death due to irregularities in heartbeat," Rockman said. "That some genes affect cardiac function without affecting survival and vice versa suggests that distinct genes may underlie the gradual decline in heart function characteristic of heart failure and the risk of sudden death associated with the disease."

The next step will be to identify the precise genes within these regions that modify heart failure outcome, using the sequenced mouse and human genomes to identify likely candidates, said the researchers.

Additional researchers on the study include first author Philippe Le Corvoisier, M.D., Hyun-Young Park, M.D., and Kerri Carlson, all of Duke University Medical Center. The team has already begun a collaboration with others at Duke to identify genes that affect outcome in patients with heart failure.

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7204

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>