Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes Control Severity of Heart Failure, Study Finds

17.11.2003


By screening the genomes of mice with heart failure, Duke University Medical Center researchers have discovered multiple stretches of DNA containing genes that modify the heart’s pumping ability and survival with the disease. The findings could point researchers to genes that determine the severity of heart failure in patients, according to the Duke team.


Douglas A. Marchuk, PhD
Photo Credit: Duke University Medical Center



"Our goal is to find novel genes that modify human heart failure by letting the mouse point us in the right direction," said Duke cardiologist Howard Rockman, M.D., noting that 99 percent of mouse genes are shared by humans. "Such genes would provide us the means to identify those heart failure patients having subtle genetic differences that make them more susceptible to poor outcomes."

That information would allow physicians to identify those patients in need of the most aggressive therapies and provide new targets for drug development, Rockman said. He and geneticist Douglas Marchuk, Ph.D., also of Duke, reported their findings in the Dec. 1, 2003, issue of Human Molecular Genetics. The work was supported by the National Institutes of Health, the French Federation of Cardiology and the Burroughs Wellcome Fund.


Heart failure -- a condition characterized by the inability of the heart muscles to pump enough blood to the body’s tissues -- affects nearly 5 million patients in the U.S. and is a growing public health concern, Rockman said. Despite the development of novel treatments, the one-year mortality rate for patients with heart failure is as high as 42 percent.

Yet heart failure patients exhibit significant variability in quality of life and survival with the condition, he said. "Following a heart attack, some patients are able to return to their normal lifestyle, while others are horribly debilitated," said Rockman.

In their study, the researchers set out to uncover chromosomal regions containing heart failure modifier genes responsible for some of that difference.

The researchers mated males of one mouse strain that had genetic mutations that conferred a very reproducible and severe form of heart failure, with females of another healthy mouse strain. Some of the resulting offspring exhibited severe heart failure, while others inherited genes from their healthy mothers that protected them from the disorder. By screening the genomes of the offspring, the team uncovered those genetic regions that modified the severity of heart failure.

The researchers found two genetic regions -- one on chromosome 13 and another on chromosome 18 -- linked to heart function and survival with heart failure. An additional region on chromosome 2 affected cardiac function with no effect on survival, while another on chromosome 4 influenced survival without impacting heart function in mice with heart failure, the team reported.

"The immediate cause of death for patients with heart failure can be the consequence of two different mechanisms: gradual pump failure or sudden death due to irregularities in heartbeat," Rockman said. "That some genes affect cardiac function without affecting survival and vice versa suggests that distinct genes may underlie the gradual decline in heart function characteristic of heart failure and the risk of sudden death associated with the disease."

The next step will be to identify the precise genes within these regions that modify heart failure outcome, using the sequenced mouse and human genomes to identify likely candidates, said the researchers.

Additional researchers on the study include first author Philippe Le Corvoisier, M.D., Hyun-Young Park, M.D., and Kerri Carlson, all of Duke University Medical Center. The team has already begun a collaboration with others at Duke to identify genes that affect outcome in patients with heart failure.

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7204

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>