Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes Control Severity of Heart Failure, Study Finds

17.11.2003


By screening the genomes of mice with heart failure, Duke University Medical Center researchers have discovered multiple stretches of DNA containing genes that modify the heart’s pumping ability and survival with the disease. The findings could point researchers to genes that determine the severity of heart failure in patients, according to the Duke team.


Douglas A. Marchuk, PhD
Photo Credit: Duke University Medical Center



"Our goal is to find novel genes that modify human heart failure by letting the mouse point us in the right direction," said Duke cardiologist Howard Rockman, M.D., noting that 99 percent of mouse genes are shared by humans. "Such genes would provide us the means to identify those heart failure patients having subtle genetic differences that make them more susceptible to poor outcomes."

That information would allow physicians to identify those patients in need of the most aggressive therapies and provide new targets for drug development, Rockman said. He and geneticist Douglas Marchuk, Ph.D., also of Duke, reported their findings in the Dec. 1, 2003, issue of Human Molecular Genetics. The work was supported by the National Institutes of Health, the French Federation of Cardiology and the Burroughs Wellcome Fund.


Heart failure -- a condition characterized by the inability of the heart muscles to pump enough blood to the body’s tissues -- affects nearly 5 million patients in the U.S. and is a growing public health concern, Rockman said. Despite the development of novel treatments, the one-year mortality rate for patients with heart failure is as high as 42 percent.

Yet heart failure patients exhibit significant variability in quality of life and survival with the condition, he said. "Following a heart attack, some patients are able to return to their normal lifestyle, while others are horribly debilitated," said Rockman.

In their study, the researchers set out to uncover chromosomal regions containing heart failure modifier genes responsible for some of that difference.

The researchers mated males of one mouse strain that had genetic mutations that conferred a very reproducible and severe form of heart failure, with females of another healthy mouse strain. Some of the resulting offspring exhibited severe heart failure, while others inherited genes from their healthy mothers that protected them from the disorder. By screening the genomes of the offspring, the team uncovered those genetic regions that modified the severity of heart failure.

The researchers found two genetic regions -- one on chromosome 13 and another on chromosome 18 -- linked to heart function and survival with heart failure. An additional region on chromosome 2 affected cardiac function with no effect on survival, while another on chromosome 4 influenced survival without impacting heart function in mice with heart failure, the team reported.

"The immediate cause of death for patients with heart failure can be the consequence of two different mechanisms: gradual pump failure or sudden death due to irregularities in heartbeat," Rockman said. "That some genes affect cardiac function without affecting survival and vice versa suggests that distinct genes may underlie the gradual decline in heart function characteristic of heart failure and the risk of sudden death associated with the disease."

The next step will be to identify the precise genes within these regions that modify heart failure outcome, using the sequenced mouse and human genomes to identify likely candidates, said the researchers.

Additional researchers on the study include first author Philippe Le Corvoisier, M.D., Hyun-Young Park, M.D., and Kerri Carlson, all of Duke University Medical Center. The team has already begun a collaboration with others at Duke to identify genes that affect outcome in patients with heart failure.

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7204

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>