Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dying nerves cause even more harm after spinal cord injury

13.11.2003


A new study in rats has found that after severe spinal cord injury, molecules intended to help nerves communicate can attack the tissue surrounding the initial injury and cause further damage.



Interestingly, this latent, or secondary, injury develops over days and even weeks after the initial injury. It also appears to cause larger, more debilitating lesions in the spinal cord, said Randy Christensen, the study’s lead author and a postdoctoral researcher in neuroscience at Ohio State University.

Receiving the initial brunt of the secondary trauma seem to be the neurons, or the cells in gray matter. As time passes, however, tissue in the white matter is also destroyed by secondary damage. Oligodendrocytes, the main cell type in white matter, begin to self-destruct during the secondary injury.


Oligodendrocytes protect the white matter’s axons – long, skinny tails attached to nerve cells that carry nerve cell messages throughout the body.

"These long, fragile extensions of nerve cells are probably very vulnerable," Christensen said.

The researchers presented their results Nov. 12 in New Orleans at the annual Society for Neuroscience meeting. Christensen conducted the study with Jacqueline Bresnahan, a professor of neuroscience at Ohio State, and Michael Beattie, the chair of Ohio State’s neuroscience department.

The researchers injected glutamate, tumor necrosis factor-alpha (TNFa) or both molecules into the spinal cords of healthy, uninjured rats. Glutamate is a neurotransmitter, while TNFa is a potent cell stimulator – its function includes stimulating the body’s immune response after injury. Both are released in dangerously high concentrations at the site of a spinal cord injury.

Christensen and his colleagues suspect that glutamate and TNFa work in tandem, essentially over-stimulating the tissue surrounding the original site of damage, causing the surrounding cells to “go into shock” and die.

In these experiments, the rats’ spinal cords weren’t injured, but the injections of glutamate and TNFa mimicked the effects of secondary injury. A group of control rats was injected with albumin, an innocuous protein, to make sure the injection itself hadn’t caused the secondary injury.

The researchers found a delayed reaction . . . the axons near the injection site began breaking two days after injection. In related work, these researchers have found evidence of axons breaking up to fourteen weeks after an injury.

"While we’re not sure why the axons begin to break so long after the initial injection, the cells meant to help the wound heal may get overly excited – so much so that they destroy the axons," Christensen said. “Another possibility is that the protective oligodendrocytes take a couple of days to die, finally exposing the bare axons to damage.

"Preventing over-stimulation caused by glutamate and TNFa together may be a viable strategy for therapeutic intervention after human spinal cord injury."

While there was noticeable nerve cell loss and tissue damage in gray matter 90 minutes after injections, the axons were not affected at this point in time.

By day two after the injection, however, there were large lesions in the white matter surrounding the injection site as well as noticeable damage to the axons.

"The time course is pretty important, because in spinal cord injury, many of the cells don’t die until long after the initial injury," Christensen said. "Dying neurons might release glutamate and TNFa, and that release eventually kills neighboring nerve cells, oligodendrocytes, and axons."

This research was supported by a grant from the National Institutes of Health.

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/sfnspine.htm
http://medicine.osu.edu/neuroscience/index.html

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>