Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth hormone-deficient young adults need larger replacement doses than older adults

06.11.2003


Young adults who received growth hormone treatment as children for deficiencies in producing that essential hormone likely will need continued treatment for years and at higher doses than doctors now prescribe, a new multi-center North American study concludes.



Higher doses of the hormone should help protect such patients from excessive and eventually crippling declines in the density of their bones and from higher blood levels of harmful fats that could promote heart disease, researchers say. Earlier reports suggested growth hormone also helped maintain healthy muscle mass and lessened depression, a common complaint among patients.

A report on the study, conducted over two years at 12 U.S. and five Canadian medical centers, appears in the November issue of the Journal of Clinical Endocrinology & Metabolism.


Dr. Louis Underwood, professor of pediatrics at the University of North Carolina at Chapel Hill School of Medicine, led the research. Co-authors of the paper were Drs. Kenneth M. Attie and Joyce Baptista of Genentech Inc. of San Francisco and the Genentech Collaborative Study Group.

"We did this randomized, double-blind, placebo-controlled trial to improve our understanding of what doses we should give young adults who need treatment," said Underwood. "We believe our findings will change clinical practice in the United States and abroad."

Typically, doctors treat growth hormone-deficient children with hormone doses that reach a peak in late adolescence when the naturally secreted compound reaches its maximum in healthy children, he said. As patients age into adulthood, clinicians often stop treatment to determine whether there is a continued need. If so, treatment is restarted at significantly lower doses since older adults need less growth hormone and cannot tolerate it as well as children.

"Besides the placebo, which is inactive, we tested a dose of 25 micrograms per kilogram of body weight per day and also a dose that was half that large," Underwood said. "The 25 microgram dose is about half of what is used in children."

The medical scientists studied 39 men and 25 women, all under age 35, and looked especially at what happened to their bone mineral density, depending on whether or not they received growth hormone and how much.

"Compared with the placebo group, patients who got 12.5 micrograms showed better bone mineral density after two years," Underwood said. "Those who received 25 micrograms per kilogram daily showed an even greater and more sustained effect."

Both growth hormone-treated groups had similar changes in body composition at six months -- decreased fat and increased lean mass -- but some improvements were later lost in the lower-dose group, he said.

"A significant decrease in low-density lipoprotein cholesterol, which is believed to be bad for a person’s health, was seen only in the higher growth hormone dose group," Underwood said. "We did not observe significant changes in quality of life or echocardiograph measures."

Adverse effects among study groups were about the same except that the hormone-treated groups showed more swelling, a common side effect of such treatment in adults, he said.

Genentech supported the research. Collaborating institutions in the United States included Children’s Hospital Medical Center in Cincinnati, Kansas Medical Center, the Medical College of Wisconsin, the Oregon Health Sciences University, Stanford University and the universities of California at Los Angeles and Michigan. Canadian institutions included Children’s Hospital in Winnipeg, Children’s Hospital of Western Ontario, Central University Hospital in Sherbrooke, Quebec, the Research Center of Hotel-Dieu of Montreal and Central Hospital of Laval University in Ste.-Foy, Quebec.

In the 1970s, Dr. Judson J. Van Wyk, Underwood and UNC colleagues purified a compound known as IGF-1 and developed an assay for it. IGF-1, or insulin-like growth factor 1, is a growth-hormone-dependent protein that mediates many of the growth-promoting actions of growth hormone.

Now, doctors around the world monitor the effect of growth hormone therapy in hormone-deficient adults by testing their levels of IGF-1, which is made throughout the body but chiefly in the liver. The brain’s pea-sized pituitary gland produces growth hormone.

David Williamson | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>