Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More evidence shows that children’s brains with dyslexia respond abnormally to language stimuli

27.10.2003


Imaging studies yield a potential core marker for reading problems, underscore neurological basis of difficulties



Researchers have additional evidence that reading problems are linked to abnormal sound processing, thanks to high-precision pictures of the brain at work. In a recent study, when children without reading problems tried to distinguish between similar spoken syllables, speech areas in the left brain worked much harder than corresponding areas in the right brain, whose function is still unknown. But when children with dyslexia made the same attempt, those right-brain areas actually worked harder, going into overdrive after a brief delay. These findings appear in the October issue of Neuropsychology, which is published by the American Psychological Association (APA).

Psychologists at The University of Texas Health Science Center at Houston targeted the suspect brain areas by isolating speech-processing sites from sites involved with other aspects of language, such as memory and meaning. As a result, they believe their research contributes to the identification of a central marker of the deficit that makes it hard for people with dyslexia to process similar but different sounds –- in both spoken and written form. The results parallel prior evidence gathered by the Houston team that brains of children with dyslexia also respond abnormally during reading.


The researchers studied the brain activity of 12 children with and 11 children without dyslexia during a simple speech perception task. The children were eight to 12 years old. Magnetoencephalography (MEG), a non-invasive, high-resolution form of functional imaging, highlighted precise activity in participants’ left and right temporoparietal (TP) language areas while the children discriminated between spoken pairs of syllables, such as /ga/ and /ka/. This kind of task, known as phonological processing, is fundamental to acquiring reading skill. The temporoparietal areas are on the surface in the back of the brain.

While distinguishing between sounds, the non-impaired readers showed more relative activity in the speech part of the left TP area. During the same task, after a slight delay, impaired readers showed a sharp peak of relative activation in corresponding (but functionally mysterious) areas on the right side. The poorer the child’s performance in phonological processing, the more their right brains "lit up" during that task.

The results, says co-author Joshua Breier, Ph.D., suggest that children with dyslexia "may lack the predominant involvement of left-hemisphere auditory association cortices" shown by children and adults without reading problems.

Dyslexia may affect up to 17 percent of the school-age population and can continue into adulthood. Reading experts have long suspected that many reading problems, especially in decoding letter sounds, are rooted in the brain and have more to do with sound than sight. Brain imaging studies have confirmed that suspicion and helped to put to rest any notion that dyslexia, although it can make a child feel "stupid" and be a problem in school, reflects visual problems or a lower overall intelligence.

"The neurological deficit appears to be specific to very restricted areas of the brain," says Breier, "and can occur in children with a wide range of general intellectual function."

Such findings are helping to shape national education policy. In fact, co-author Jack Fletcher, Ph.D., points out that most states, following federal guidelines, have for decades used a discrepancy between IQ and reading tests to determine eligibility for special education in the learning disability category, which accounts for more than half of all students in special education. However, several national bodies have, in the past year, proposed allowing states to use alternative means of establishing eligibility. Legislation is in progress. Breier explains that given the research, "The use of IQ in reading disability definitions, at least for these children, is not appropriate." Adds Fletcher, "It’s poor reading that’s important."

And, poor reading can improve. "The present study shows that reliable brain correlates can be identified in individual children," Breier points out. Given that effective teaching changes brain activation patterns, he says, "the brain in people with reading difficulties is responsive to intense intervention."

Further research will gauge the reliability of the findings, which were established with a participant number typical of a brain-imaging study, using high-precision measurements. In addition, the Houston researchers hope to determine under which treatment conditions MEG brain imaging might be associated with how well a child with dyslexia responds to intervention.



Article: "Abnormal Activation of Temporoparietal Language Areas During Phonetic Analysis in Children with Dyslexia," by Joshua I. Breier, Ph.D.; Panagiotis G. Simos, Ph.D.; Jack M. Fletcher, Ph.D.; Eduardo M. Castillo, Ph.D.; Wenbo Zhang, Ph.D.; and Andrew C. Papanicolaou, Ph.D.; The University of Texas Health Science Center at Houston; Neuropsychology, Vol. 17, No. 4.

(Full text of the article is available from the APA Public Affairs Office and at http://www.apa.org/releases/dyslexia_article.pdf)

Joshua Breier can be reached in Houston at The Institute for Rehabilitation and Research by email at Joshua.i.breier@uth.tmc.edu or by phone at 713-797-7570. His secretary is Michelle O’Neal.

The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting human welfare.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/
http://www.apa.org/releases/dyslexia_article.pdf

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>