Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More evidence shows that children’s brains with dyslexia respond abnormally to language stimuli

27.10.2003


Imaging studies yield a potential core marker for reading problems, underscore neurological basis of difficulties



Researchers have additional evidence that reading problems are linked to abnormal sound processing, thanks to high-precision pictures of the brain at work. In a recent study, when children without reading problems tried to distinguish between similar spoken syllables, speech areas in the left brain worked much harder than corresponding areas in the right brain, whose function is still unknown. But when children with dyslexia made the same attempt, those right-brain areas actually worked harder, going into overdrive after a brief delay. These findings appear in the October issue of Neuropsychology, which is published by the American Psychological Association (APA).

Psychologists at The University of Texas Health Science Center at Houston targeted the suspect brain areas by isolating speech-processing sites from sites involved with other aspects of language, such as memory and meaning. As a result, they believe their research contributes to the identification of a central marker of the deficit that makes it hard for people with dyslexia to process similar but different sounds –- in both spoken and written form. The results parallel prior evidence gathered by the Houston team that brains of children with dyslexia also respond abnormally during reading.


The researchers studied the brain activity of 12 children with and 11 children without dyslexia during a simple speech perception task. The children were eight to 12 years old. Magnetoencephalography (MEG), a non-invasive, high-resolution form of functional imaging, highlighted precise activity in participants’ left and right temporoparietal (TP) language areas while the children discriminated between spoken pairs of syllables, such as /ga/ and /ka/. This kind of task, known as phonological processing, is fundamental to acquiring reading skill. The temporoparietal areas are on the surface in the back of the brain.

While distinguishing between sounds, the non-impaired readers showed more relative activity in the speech part of the left TP area. During the same task, after a slight delay, impaired readers showed a sharp peak of relative activation in corresponding (but functionally mysterious) areas on the right side. The poorer the child’s performance in phonological processing, the more their right brains "lit up" during that task.

The results, says co-author Joshua Breier, Ph.D., suggest that children with dyslexia "may lack the predominant involvement of left-hemisphere auditory association cortices" shown by children and adults without reading problems.

Dyslexia may affect up to 17 percent of the school-age population and can continue into adulthood. Reading experts have long suspected that many reading problems, especially in decoding letter sounds, are rooted in the brain and have more to do with sound than sight. Brain imaging studies have confirmed that suspicion and helped to put to rest any notion that dyslexia, although it can make a child feel "stupid" and be a problem in school, reflects visual problems or a lower overall intelligence.

"The neurological deficit appears to be specific to very restricted areas of the brain," says Breier, "and can occur in children with a wide range of general intellectual function."

Such findings are helping to shape national education policy. In fact, co-author Jack Fletcher, Ph.D., points out that most states, following federal guidelines, have for decades used a discrepancy between IQ and reading tests to determine eligibility for special education in the learning disability category, which accounts for more than half of all students in special education. However, several national bodies have, in the past year, proposed allowing states to use alternative means of establishing eligibility. Legislation is in progress. Breier explains that given the research, "The use of IQ in reading disability definitions, at least for these children, is not appropriate." Adds Fletcher, "It’s poor reading that’s important."

And, poor reading can improve. "The present study shows that reliable brain correlates can be identified in individual children," Breier points out. Given that effective teaching changes brain activation patterns, he says, "the brain in people with reading difficulties is responsive to intense intervention."

Further research will gauge the reliability of the findings, which were established with a participant number typical of a brain-imaging study, using high-precision measurements. In addition, the Houston researchers hope to determine under which treatment conditions MEG brain imaging might be associated with how well a child with dyslexia responds to intervention.



Article: "Abnormal Activation of Temporoparietal Language Areas During Phonetic Analysis in Children with Dyslexia," by Joshua I. Breier, Ph.D.; Panagiotis G. Simos, Ph.D.; Jack M. Fletcher, Ph.D.; Eduardo M. Castillo, Ph.D.; Wenbo Zhang, Ph.D.; and Andrew C. Papanicolaou, Ph.D.; The University of Texas Health Science Center at Houston; Neuropsychology, Vol. 17, No. 4.

(Full text of the article is available from the APA Public Affairs Office and at http://www.apa.org/releases/dyslexia_article.pdf)

Joshua Breier can be reached in Houston at The Institute for Rehabilitation and Research by email at Joshua.i.breier@uth.tmc.edu or by phone at 713-797-7570. His secretary is Michelle O’Neal.

The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting human welfare.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/
http://www.apa.org/releases/dyslexia_article.pdf

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>