Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant gene linked to obsessive compulsive disorder

24.10.2003


Analysis of DNA samples from patients with obsessive compulsive disorder (OCD) and related illnesses suggests that these neuropsychiatric disorders affecting mood and behavior are associated with an uncommon mutant, malfunctioning gene that leads to faulty transporter function and regulation. Norio Ozaki, M.D., Ph.D., and colleagues in the collaborative study explain their findings in the October 23 Molecular Psychiatry.

Researchers funded by the National Institutes of Health have found a mutation in the human serotonin transporter gene, hSERT, in unrelated families with OCD. A second variant in the same gene of some patients with this mutation suggests a genetic "double hit," resulting in greater biochemical effects and more severe symptoms. Among the 10 leading causes of disability worldwide, OCD is a mental illness characterized by repetitive unwanted thoughts and behaviors that impair daily life.

"In all of molecular medicine, there are few known instances where two variants within one gene have been found to alter the expression and regulation of the gene in a way that appears associated with symptoms of a disorder," said co-author Dennis Murphy, M.D., National Institute of Mental Health (NIMH) Laboratory of Clinical Science. "This step forward gives us a glimpse of the complications ahead in studying the genetic complexity of neuropsychiatric disorders."



Psychiatric interviews of the patients’ families revealed that 6 of the 7 individuals with the mutation had OCD or OC personality disorder and some also had anorexia nervosa (AN), Asperger’s syndrome (AS), social phobia, tic disorder, and alcohol or other substance abuse/dependence. Researchers found an unusual cluster of OCD, AN, and AS/autism, disorders together with the mutation in approximately one percent of individuals with OCD.

The scientists analyzed DNA from 170 unrelated individuals, including 30 patients each with OCD, eating disorders, and seasonal affective disorder, plus 80 healthy control subjects. They detected gene variants by scanning the hSERT gene’s coding sequence. A substitution of Val425 for Ile425 in the sequence occurred in two patients with OCD and their families, but not in additional patients or controls. Although rare, with the I425V mutation found in two unrelated families, the researchers propose it is likely to exist in other families with OCD and related disorders.

In addition to the I425V mutation, the two original subjects and their two siblings had a particular form of another hSERT variant, two long alleles of the 5-HTTLPR polymorphism. This variant, associated with increased expression and function of the serotonin transporter, suggests a "double hit," or two changes within the same gene. The combination of these changes, both of which increase serotonin transport by themselves, may explain the unusual severity and treatment resistence of the illnesses in the subjects and their siblings.

"This is a new model for neuropsychiatric genetics, the concept of two or maybe more within-gene modifications being important in each affected individual. This is also probably the first report of a modification in a transporter gene resulting in a gain rather than a decrease in function," said NIMH Director Thomas Insel, M.D.

SERT allows neurons, platelets, and other cells to accumulate the chemical neurotransmitter serotonin, which affects emotions and drives. Neurons communicate by using chemical messages like serotonin between cells. The transporter protein, by recycling serotonin, regulates its concentration in a gap, or synapse, and thus its effects on a receiving neuron’s receptor.

Transporters are important sites for agents that treat psychiatric disorders. Drugs that reduce the binding of serotonin to transporters (selective serotonin reuptake inhibitors, or SSRIs) treat mental disorders effectively. About half of patients with OCD are treated with SSRIs, but those with the hSERT gene defect do not seem to respond to them, according to the study.

Any vulnerability to OCD from gene effects most likely interacts with events in the environment like stresses, other factors like gender, and treatments, Murphy said. By examining the serotonin transporter gene’s mutation and flawed regulation in individuals with OCD, the new research provides insights on transporter function and on the consequences of the variant, which may lead to tests to identify and treat mental illness.

A related study in the August 2003 Molecular Pharmacology tested consequences of the hSERT variant. The report is considered the first to identify a coding mutation in a transporter linked to a psychiatric condition. Researchers found that the I425V mutation of hSERT increased the transport activity of this protein, capturing more serotonin and most likely reducing effects at the receiving neuron’s receptors, outperforming the common transporter. The mutant molecule was not regulated normally and did not respond to cell signals that activate the common form of the transporter. Gary Rudnick and Fusun Kilic, Yale University School of Medicine, with Murphy at NIMH, conducted this research, which was funded by the Rockefeller Brothers Fund, the National Alliance for Research on Schizophrenia and Depression, and the National Institute on Drug Abuse (NIDA).

Participants in the study published in Molecular Psychiatry were: Norio Ozaki, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, whose early work on the project was supported by awards from the NIMH Intramural Programs of the National Institute of Alcohol Abuse and Alcoholism (NIAAA) and the NIMH; David Goldman, NIAAA; Walter Kaye and Katherine Plotnicov, University of Pittsburgh Medical Center and Western Psychiatric Institute and Clinic; Benjamin Greenberg, Butler Hospital and Brown University School of Medicine; Jaakko Lappalainen, Yale University School of Medicine; and Gary Rudnick, Department of Pharmacology, Yale University School of Medicine; Dennis Murphy, NIMH Laboratory of Clinical Science.

Constance Burr | EurekAlert!
Further information:
http://www.nimh.nih.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>