Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant gene linked to obsessive compulsive disorder

24.10.2003


Analysis of DNA samples from patients with obsessive compulsive disorder (OCD) and related illnesses suggests that these neuropsychiatric disorders affecting mood and behavior are associated with an uncommon mutant, malfunctioning gene that leads to faulty transporter function and regulation. Norio Ozaki, M.D., Ph.D., and colleagues in the collaborative study explain their findings in the October 23 Molecular Psychiatry.

Researchers funded by the National Institutes of Health have found a mutation in the human serotonin transporter gene, hSERT, in unrelated families with OCD. A second variant in the same gene of some patients with this mutation suggests a genetic "double hit," resulting in greater biochemical effects and more severe symptoms. Among the 10 leading causes of disability worldwide, OCD is a mental illness characterized by repetitive unwanted thoughts and behaviors that impair daily life.

"In all of molecular medicine, there are few known instances where two variants within one gene have been found to alter the expression and regulation of the gene in a way that appears associated with symptoms of a disorder," said co-author Dennis Murphy, M.D., National Institute of Mental Health (NIMH) Laboratory of Clinical Science. "This step forward gives us a glimpse of the complications ahead in studying the genetic complexity of neuropsychiatric disorders."



Psychiatric interviews of the patients’ families revealed that 6 of the 7 individuals with the mutation had OCD or OC personality disorder and some also had anorexia nervosa (AN), Asperger’s syndrome (AS), social phobia, tic disorder, and alcohol or other substance abuse/dependence. Researchers found an unusual cluster of OCD, AN, and AS/autism, disorders together with the mutation in approximately one percent of individuals with OCD.

The scientists analyzed DNA from 170 unrelated individuals, including 30 patients each with OCD, eating disorders, and seasonal affective disorder, plus 80 healthy control subjects. They detected gene variants by scanning the hSERT gene’s coding sequence. A substitution of Val425 for Ile425 in the sequence occurred in two patients with OCD and their families, but not in additional patients or controls. Although rare, with the I425V mutation found in two unrelated families, the researchers propose it is likely to exist in other families with OCD and related disorders.

In addition to the I425V mutation, the two original subjects and their two siblings had a particular form of another hSERT variant, two long alleles of the 5-HTTLPR polymorphism. This variant, associated with increased expression and function of the serotonin transporter, suggests a "double hit," or two changes within the same gene. The combination of these changes, both of which increase serotonin transport by themselves, may explain the unusual severity and treatment resistence of the illnesses in the subjects and their siblings.

"This is a new model for neuropsychiatric genetics, the concept of two or maybe more within-gene modifications being important in each affected individual. This is also probably the first report of a modification in a transporter gene resulting in a gain rather than a decrease in function," said NIMH Director Thomas Insel, M.D.

SERT allows neurons, platelets, and other cells to accumulate the chemical neurotransmitter serotonin, which affects emotions and drives. Neurons communicate by using chemical messages like serotonin between cells. The transporter protein, by recycling serotonin, regulates its concentration in a gap, or synapse, and thus its effects on a receiving neuron’s receptor.

Transporters are important sites for agents that treat psychiatric disorders. Drugs that reduce the binding of serotonin to transporters (selective serotonin reuptake inhibitors, or SSRIs) treat mental disorders effectively. About half of patients with OCD are treated with SSRIs, but those with the hSERT gene defect do not seem to respond to them, according to the study.

Any vulnerability to OCD from gene effects most likely interacts with events in the environment like stresses, other factors like gender, and treatments, Murphy said. By examining the serotonin transporter gene’s mutation and flawed regulation in individuals with OCD, the new research provides insights on transporter function and on the consequences of the variant, which may lead to tests to identify and treat mental illness.

A related study in the August 2003 Molecular Pharmacology tested consequences of the hSERT variant. The report is considered the first to identify a coding mutation in a transporter linked to a psychiatric condition. Researchers found that the I425V mutation of hSERT increased the transport activity of this protein, capturing more serotonin and most likely reducing effects at the receiving neuron’s receptors, outperforming the common transporter. The mutant molecule was not regulated normally and did not respond to cell signals that activate the common form of the transporter. Gary Rudnick and Fusun Kilic, Yale University School of Medicine, with Murphy at NIMH, conducted this research, which was funded by the Rockefeller Brothers Fund, the National Alliance for Research on Schizophrenia and Depression, and the National Institute on Drug Abuse (NIDA).

Participants in the study published in Molecular Psychiatry were: Norio Ozaki, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, whose early work on the project was supported by awards from the NIMH Intramural Programs of the National Institute of Alcohol Abuse and Alcoholism (NIAAA) and the NIMH; David Goldman, NIAAA; Walter Kaye and Katherine Plotnicov, University of Pittsburgh Medical Center and Western Psychiatric Institute and Clinic; Benjamin Greenberg, Butler Hospital and Brown University School of Medicine; Jaakko Lappalainen, Yale University School of Medicine; and Gary Rudnick, Department of Pharmacology, Yale University School of Medicine; Dennis Murphy, NIMH Laboratory of Clinical Science.

Constance Burr | EurekAlert!
Further information:
http://www.nimh.nih.gov

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>