Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ki-67 biomarker a strong predictor of outcome for prostate cancer patients

22.10.2003


The largest known biomarker study for prostate cancer patients treated with radiation therapy shows that the presence Ki-67 may be a significant predictor of patient outcome for men with prostate cancer treated with both radiation and hormones. The study was sponsored by the Radiation Therapy Oncology Group and was presented today by Alan Pollack, M.D., Ph.D., chairman of radiation oncology at Fox Chase Cancer Center, at the 45th annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Salt Lake City, Utah.



The Ki-67 biomarker is a proliferation antigen that is detected by a process called immunohistochemical staining. When a tumor cell tests positive for Ki-67, the tumor is actively growing.

Prostate cancers typically have very low percentages of growing cells and they grow slowly. Pollack and others have previously shown in smaller studies that the greater the proportion of prostate tumor cells with Ki-67, the more aggressive the cancer. Prior studies involved small patient numbers and did not definitively establish the usefulness of the Ki-67 biomarker.


"Our study conclusively shows that Ki-67 was the most significant determinant of distant metastasis and death in prostate cancer patients," explained Pollack. "The relationship of Ki-67 to patient outcome is a continuous function, wherein the higher the percent of Ki-67, the greater the risk of an adverse result. In addition, Ki-67, along with PSA, Gleason score and stage, appears to be valuable in determining whether high-risk patients may be spared long-term androgen deprivation."

Pollack says that a consistent threshold for the application of Ki-67 on a routine basis has not been previously established. In this study, when greater than 7.1% of the tumor cells stained for Ki-67, there was a significantly increased risk of distant metastasis and death due to prostate cancer.

Furthermore, Pollack adds, Ki-67 should be very useful in stratifying patients in future clinical trials.

Other authors in the study include Michelle DeSilvio, American College Of Radiology, Philadelphia, Pa.; Li-Yan Khor, Fox Chase Cancer Center, Philadelphia, Pa.; Rile Li, Baylor School of Medicine, Houston, Tex.; Tahseen Al-Saleem, Fox Chase Cancer Center; M. Elizabeth Hammond, University of Utah School of Medicine, Salt Lake City; Varagur Venkatesan, Medical College of Wisconsin, Milwaukee; Roger Byhardt, University of California San Francisco, Calif.; Gerald E. Hanks, retired from Fox Chase Cancer Center; Mack Roach, University of Western Ontario, London, Ontario; William Shipley, Massachusetts General Hospital, Boston; and Howard Sandler, University of Michigan Medical Center, Ann Arbor.


Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic, clinical, population and translational research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at www.fccc.edu or call 1-888-FOX CHASE.

Karen Carter Mallet | EurekAlert!
Further information:
http://www.fccc.edu/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>