Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth study advances prion disease research

16.10.2003


Adding to the paradox of prion diseases, Dartmouth Medical School researchers have discovered that RNA plays a role in converting a normal prion protein into a mutant that leads to mad cow disease and other fatal brain illnesses.



Their study, reported in the Oct. 16 issue of Nature, provides important clues to understanding the role of prions, unorthodox infectious agents whose ability to transmit disease has confounded physicians and scientists. The work, by Dr. Surachai Supattapone, assistant professor of biochemistry and of medicine, opens new avenues of exploration for diagnosis and treatment of a perplexing group of neurodegenerative disorders called prion diseases.

Prions lack RNA or DNA, the nucleic acids that contain genetic information to replicate. No one knows what spurs conversion of a normal prion protein to a disease-causing counterpart. Supattapone, with coauthors Nathan Deleault and Ralf Lucassen, has discovered that RNA may be a catalyst for transformation.


"It has been well proven that nucleic acids, including RNA, are not part of the infectious agent, so it’s an ironic twist that a catalyst for the reaction may be RNA," said Supattapone. He emphasized, however, that the findings are consistent with the "protein-only" hypothesis of prion diseases because the nucleic acids are in the host and are not contained in the disease spreading particle.

Prions related to infectious brain diseases such as Cruetzfeld-Jakob disease in humans, chronic wasting or scrapie in animals have long been known, but these diseases often develop over years, so research to piece together the process has moved slowly.

The discovery more than a quarter century ago that prions were proteins, devoid of nucleic acids, upended what scientists assumed not only about disease transmission, but about life itself. All mammals have a gene to make a prion protein, but the normal prion is a different shape than the infectious prion. Somehow, this normal protein is modified into an abnormal counterpart that accumulates exponentially in the brain until death.

"It’s a curious thing, because this protein is able to stimulate its own formation and change, without nucleic acids. It’s been a fascinating question for people to come to grips with scientifically in addition to being the central reaction in an important medical problem," Supattapone said.

Now, his team has discovered that specific RNA molecules are required to transform prion proteins into their abnormal shapes. They devised a technique to observe how the normal prion protein, called PrPC, efficiently converts into the abnormal infectious protein, PrPSc (scrapie), in a test tube. This biochemical assay enabled the researchers to pinpoint the conversion mechanisms in the cell.

They found that adding enzymes that slice RNA blocked accumulation of abnormal prion protein. Taking it further, the researchers purified RNA and reconstituted the activity they had abolished with the RNA-cleaving enzymes. Adding enzyme knocked down scrapie protein and adding RNA brought it back up, indicating that RNA is really a stimulator. Moreover, RNA appears to boost the signal even of dilute amounts of scrapie protein.

The existence of RNA-converting factors could aid early detection of prion diseases, now incurable and invariably fatal. Ideal treatment time would be in the nascent stages of symptoms, before development of permanent brain damage. Current diagnosis requires a small brain biopsy, that may not provide much abnormal protein, but a technique where RNA can be added to amplify the signal may provide a more sensitive early diagnosis.

The next step is to pinpoint the RNA molecule, which seems to be only in mammals. "This stimulatory RNA appears to be a specific one, which makes it exciting to study. If we can identify, clone and produce this specific RNA, it may be useful as therapeutic target or a diagnostic tool. In addition, it may offer clues to the mechanism of conversion," Supattapone said. More studies are required to confirm the results in animals, he cautioned, but he is optimistic that the process in the test tube will contribute important insight into prion diseases.


The work was supported by the Burroughs Wellcome Fund Career Development Award, the Hitchcock Foundation and an NIH Clinical Investigator Development Award. For more information, contact Supattapone at: Surachai.Supattapone@dartmouth.edu or 603-650-1192.

Hali Wickner | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>